Analisa Fraud Pada Transaksi Kartu Kredit Menggunakan Algoritma Random Forest
Abstract
Abstrak — Seiring dengan terjadinya pandemi Covid-19 penggunaan kartu kredit pun meningkat, kartu kredit menjadi opsi sistem pembayaran yang banyak digunakan karena kemudahan layanan dan juga kemudahan untuk diakses oleh siapa pun, pembayaran menggunakan kartu kredit juga dapat mengurangi terjadinya penularan Covid-19 melalui kontak fisik. Dengan bertambah banyaknya penggunaan kartu kredit, kasus fraud menggunakan kartu kredit pun meningkat. Untuk mengatasi banyaknya kasus fraud yang terjadi, pihak perbankan memerlukan upaya atau solusi untuk mendeteksi tindakan fraud secara cepat dan akurat. Salah satu upaya yang dapat dilakukan adalah pendeteksian fraud menggunakan machine learning dengan algoritma random forest.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Teknologi Informasi dan Terapan (J-TIT) and Department of Information Technology, Politeknik Negeri Jember as publisher of the journal. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations. Authors should sign a copyright transfer agreement when they have approved the final proofs sent by Jurnal Teknologi Informasi dan Terapan (J-TIT) prior to the publication. The copyright transfer agreement can be download here .
Jurnal Teknologi Informasi dan Terapan (J-TIT) and Department of Information Technology, Politeknik Negeri Jember and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Teknologi Informasi dan Terapan (J-TIT) are the sole responsibility of their respective authors and advertisers.
Users of this website will be licensed to use materials from this website following the Creative Commons Attribution 4.0 International License. No fees charged. Please use the materials accordingly.
This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.