Implementasi Metode Backpropagation Neural Network Dalam Memprediksi Hasil Produksi Kedelai
Abstract
The necessary of soybean in Indonesia tends to increase annually. However, soybean production tends to decrease so that soybean needs does not fullfilled. One of the environmental factors that influence soybean production is climate such as temperature, humidity, sunlight, rainfall, and wind velocity. This study aims to predict soybean production results based on the influence of climate by using an Artificial Neural Network (ANN) method. The algorithm used is Backpropagation with climate and soybean production results in the previous period parameters as input in the prediction process. The results of this study get a training accuracy of 96.6% and testing accuracy of 96.5%.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Teknologi Informasi dan Terapan (J-TIT) and Department of Information Technology, Politeknik Negeri Jember as publisher of the journal. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations. Authors should sign a copyright transfer agreement when they have approved the final proofs sent by Jurnal Teknologi Informasi dan Terapan (J-TIT) prior to the publication. The copyright transfer agreement can be download here .
Jurnal Teknologi Informasi dan Terapan (J-TIT) and Department of Information Technology, Politeknik Negeri Jember and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Teknologi Informasi dan Terapan (J-TIT) are the sole responsibility of their respective authors and advertisers.
Users of this website will be licensed to use materials from this website following the Creative Commons Attribution 4.0 International License. No fees charged. Please use the materials accordingly.
This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.