Implementasi Teknik Bagging untuk Peningkatan Kinerja J48 dan Logistic Regression dalam Prediksi Minat Pembelian Online
Abstract
Abstract—The rapid growth of online shopping sites makes business in the virtual world very promising. Purchasing intentions is one of the keys to success in an online store. There are several data mining methods for making predictions on online purchase intentions datasets. Data can represent the characteristics or habits of each user who has visited a site whether it ends with a transaction or not. Some popular algorithms with good performance in data mining include J48 and Logistic Regression. However, in data sometimes there is a problem of class imbalance, so the ensemble technique needs to be applied. One technique that can be applied is bagging. This research examines data using bagging techniques to improve the performance of the J48 algorithm and Logistic Regression. The results of improving the performance of data mining algorithms with these techniques have an accuracy value of 89.68% for the J48 algorithm and 88.50% for the Logistic Regression algorithm. This figure shows an increase when compared with initial testing without using ensemble techniques. Increases were also experienced in Recall, F-Measure, and AUC values.
Keywords—purchasing intentions; J48; Logistic Regression; Bagging;
Abstrak— Pesatnya situs pembelanjaan online menjadikan bisnis di dunia virtual sangat menjanjikan. Minat pembelian menjadi salah satu kunci kesuksesan pada sebuah toko online. Terdapat beberapa metode data mining untuk melakukan prediksi pada dataset minat pembelian online. Data dapat mewakili karakteristik atau kebiasaan dari setiap user yang telah mengunjungi suatu situs baik berakhir dengan melakukan transaksi ataupun tidak. Beberapa algoritma yang populer dengan kinerja yang baik dalam data mining diantaranya J48 dan Logistic Regreession. Namun, dalam sebuah data terkadang terdapat masalah ketidakseimbangan kelas, sehingga perlu diterapkan teknik ensemble. Salah satu teknik yang dapat diterapkan adalah teknik bagging. Penelitian kali ini mengujikan data dengan teknik bagging untuk meningkatkan kinerja algoritma J48 dan Logistic Regression. Hasil dari peningkatan kinerja algoritma data mining dengan teknik tersebut memiliki nilai akurasi 89.68% untuk algoritma J48 dan 88.50% untuk algoritma Logistic Regression. Angka tersebut menunjukan adanya peningkatan jika dibandingkan dengan pengujian awal tanpa menggunakan teknik ensemble. Peningkatan juga dialami pada nilai Recall, F-Measure, dan AUC.
Keywords—Minat Pembelian, J48, Logistic Regression, Bagging
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Teknologi Informasi dan Terapan (J-TIT) and Department of Information Technology, Politeknik Negeri Jember as publisher of the journal. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations. Authors should sign a copyright transfer agreement when they have approved the final proofs sent by Jurnal Teknologi Informasi dan Terapan (J-TIT) prior to the publication. The copyright transfer agreement can be download here .
Jurnal Teknologi Informasi dan Terapan (J-TIT) and Department of Information Technology, Politeknik Negeri Jember and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Teknologi Informasi dan Terapan (J-TIT) are the sole responsibility of their respective authors and advertisers.
Users of this website will be licensed to use materials from this website following the Creative Commons Attribution 4.0 International License. No fees charged. Please use the materials accordingly.
This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.