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ABSTRACT Underwater communication faces significant challenges due to the dynamic 

characteristics of the channel and is strongly influenced by the physicochemical parameters of the 

water. This study proposes channel quality modeling using the Sugeno Fuzzy Inference System 

(FIS) with input variables of temperature, salinity, dissolved oxygen (DO), and turbidity. The 

system produces a Signal-to-Noise Ratio (SNR) output that is used as a basis for channel quality 

mapping, Bit Error Rate (BER) estimation, and the selection of adaptive modulation techniques 

(BPSK, QPSK, or 16QAM). Simulation results show that the Sugeno fuzzy model is able to follow 

the theoretical pattern well, where increasing temperature, salinity, and turbidity decrease the SNR 

value, while DO plays a role in maintaining channel stability. Based on the test results, at high SNR 

(≥ 15 dB) the system recommends 16QAM, at medium SNR (11–15 dB) QPSK, and at low SNR 

(≤ 10 dB) BPSK. This approach has proven effective in suppressing BER and increasing the 

reliability of underwater acoustic communications in fluctuating mangrove water environments. 
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I.INTRODUCTION  

Underwater acoustic communication is an 

important technology that plays a role in supporting 

various marine activities, such as monitoring the 

quality of the aquatic environment, controlling 

underwater vehicles, underwater sensor networks, 

and collecting oceanographic data [1], [2], [3], [4]. 

In contrast to wireless communication on land that 

uses radio waves, underwater communication relies 

on acoustic waves as the main transmission medium 

because radio waves and light experience very high 

attenuation in water, making it inefficient for long-

distance communication [1], [5], [6]. 

However, underwater acoustic channels have 

much more complex characteristics than airborne 

channels. Sound wave propagation in water 

experiences long delays, increasing attenuation with 

distance and frequency, and limited bandwidth. 

Furthermore, the phenomenon of multipath 

propagation due to wave reflections from the surface 

and seabed causes signal distortion and interference 

between propagation paths [1]. These conditions 

make acoustic communication channels nonlinear, 

highly dynamic, and dependent on time and aquatic 

environmental conditions [7], [8], [9]. 

In shallow waters, the complexity of the 

channel increases because it is influenced by the 

physico-chemical parameters of the water, including 

temperature, dissolved oxygen (DO), turbidity, and 

salinity [9], [10], [11]. Water temperature affects the 

speed of sound wave propagation, where an increase 

in temperature causes an increase in propagation 

speed and can cause refraction of sound waves due 

to temperature differences between water layers. 

The DO parameter also plays an important role, 

because high levels of dissolved oxygen are 

generally correlated with increased biological 

activity and particle movement in the water which 

has the potential to cause density fluctuations and 

scattering of acoustic signals. Turbidity affects wave 

propagation through the process of scattering and 

absorption of energy by suspended particles, thereby 

reducing the intensity of the received signal. 

Meanwhile, salinity determines the density of water; 

the higher the salinity, the faster the sound wave 

propagation, but accompanied by increased 

attenuation, especially at high frequencies [1]. 
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These four parameters simultaneously cause 

fluctuations in the Signal-to-Noise Ratio (SNR) and 

changes in channel characteristics within a relatively 

short time span, especially in coastal areas and 

highly dynamic mangrove ecosystems [10], [11], 

[12]. These SNR fluctuations have a direct impact 

on communication system performance, as indicated 

by an increase in the Bit Error Rate (BER) and a 

decrease in data transmission efficiency [13]. 

Most existing underwater acoustic 

communication systems still use static modulation 

schemes such as Binary Phase Shift Keying (BPSK), 

Quadrature Phase Shift Keying (QPSK), and 16-

Quadrature Amplitude Modulation (16QAM). 

These conventional approaches are unable to adapt 

to changing channel conditions, resulting in 

suboptimal performance. To overcome these 

limitations, the concept of adaptive modulation was 

introduced, which allows the system to dynamically 

adjust the modulation type based on channel 

conditions represented by the SNR value [5], [14], 

[15] 

Building an accurate mathematical model to 

represent the relationship between water physico-

chemical parameters and SNR values is a challenge 

in itself, considering that the relationship is 

complex, nonlinear, and influenced by natural 

environmental uncertainties. In this context, the 

fuzzy inference system approach is a promising 

alternative because it is able to model nonlinear 

relationships and handle environmental data 

uncertainty efficiently [16][17]. In particular, the 

Sugeno Fuzzy model has advantages in 

computational efficiency, stability of results, and 

ease of implementation in real-time adaptive 

systems [18], [19]. 

Therefore, this study proposes a Fuzzy 

Sugeno-based adaptive modulation model for 

underwater acoustic communication systems by 

considering the influence of water physico-chemical 

parameters, namely temperature, dissolved oxygen 

(DO), turbidity, and salinity. This model is used to 

predict SNR values based on variations in 

environmental parameters, which are then used as a 

basis for determining the most appropriate 

modulation type (BPSK, QPSK, or 16QAM) 

adaptively. This modeling is expected to be able to 

maintain a balance between Bit Error Rate (BER) 

and data rate, while increasing the efficiency and 

reliability of underwater acoustic communication in 

dynamic channel conditions, especially in 

environments with complex characteristics such as 

mangrove waters [20]. 

 

II.METHOD  

This study uses the Sugeno Fuzzy Logic 

approach to model the relationship between water 

physicochemical parameters and the quality of 

underwater communication channels. The research 

methodology consists of four main stages: system 

simulation flow, system modeling, model design 

with Sugeno fuzzy logic, and simulation data 

testing. 

2.1 System Simulation 

The underwater acoustic communication system 

simulation is designed to model the digital data 

transmission process through underwater acoustic 

channels characterized by multipath and Gaussian 

noise with complex characteristics such as 

mangrove waters. Figure 1 shows the system 

workflow. 

Underwater acoustic channels in shallow waters 

have multipath characteristics due to the reflection 

of sound waves by the surface and bottom of the 

water. In this simulation, the channel is represented 

by a three-path impulse response with relative 

amplitude coefficients h = [0.8, 0.4, 0.2], which 

describe the direct signal and two primary 

reflections. The model reflects the realistic 

conditions of shallow channels that are susceptible 

to inter-symbol interference (ISI). 

The environmental noise is modeled as 

Additive White Gaussian Noise (AWGN) with a 

zero-mean normal distribution. Thus, the received 

signal is expressed as: 

 

𝑟(𝑡) = ℎ ∗ 𝑠(𝑡) + 𝑛(𝑡)  (1) 
 

with s(t) the modulated signal, h the channel impulse 

response, and n(t) the Gaussian noise. 

 

2.2 System Modeling 

The system modeling in this study is designed to 

link the physicochemical parameters of mangrove 

waters with the quality of underwater communication 

channels, particularly in terms of bit error rate (BER) 

and the selection of optimal modulation techniques. 

This system receives input in the form of data from 

measurements of temperature, salinity, dissolved 

oxygen (DO), and turbidity obtained from 

environmental sensors. The data is then processed 

through a normalization stage and processed using a 

fuzzy inference system (FIS) to produce output in the 

form of a Signal-to-Noise Ratio (SNR) value. This 

SNR value is the basis for mapping channel quality, 

estimating the BER level, and recommending the 

selection of appropriate modulation techniques. 
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FIGURE 1.  System workflow of the proposed Fuzzy 

Sugeno-based adaptive modulation scheme 

 

To illustrate the relationship between water 

physicochemical parameters and underwater 

communication channel conditions, fuzzy categories 

were developed for each input variable. These 

categories were divided into three levels (low, 

normal/medium, and high) with value ranges tailored 

to the characteristics of the aquatic environment. 

Each category was then mapped to SNR conditions, 

appropriate modulation choices, and BER level 

estimates. A summary of the modeling is presented in 

Tables 1 to 4 below. 

 

TABLE 1. Modeling the Relationship between 

Temperature and SNR, Modulation Techniques, and 

BER 
Catego
ry 

Range 
(°C) 

SNR 
Conditi

on 

Modulati
on 

Selection 

Bit 
Error 

Rate 

(BER) 

Descriptio
n 

Low ≤ 25 °C High 

SNR 

(low 
noise, 

strong 

signal) 

16QAM Low High 

spectral 

efficiency, 
suitable for 

high 

throughput 
 

Mediu

m 

26 – 30 

°C 

SNR 

(still 
quite 

high) 

QPSK Mediu

m 

Safe to 

use, 
compromis

es speed 

and noise 
resistance 

 

High ≥ 31 °C Low 
SNR 

(increas

ed 
noise, 

thermal 

distorti
on) 

BPSK High Robust 
against 

noise, even 

at lower 
data rates 

 
TABLE 2. Modeling the Relationship between Salinity 

and SNR, Modulation Techniques, and BER 
Catego
ry 

Range 
(ppt) 

SNR 
Conditi

on 

Modulati
on 

Selection 

Bit 
Error 

Rate 

(BER) 

Descriptio
n 

Low ≤ 5 ppt High 

SNR 

(low 
conduct

ivity, 

therefor
e low 

noise) 

16QAM Low Suitable 

for high 

throughput
, high-

order 

modulation 
remains 

stable 

 
Mediu

m 

6 – 30 

ppt 

Stable–

Mediu

m SNR 

QPSK Mediu

m 

Medium 

Compromi

se between 
speed and 

noise 

robustness 
 

High ≥ 31 ppt Low 

SNR 
(high 

conduct

ivity, 
thus 

increasi

ng 
noise) 

BPSK High Robust 

against 
noise, 

despite 

lower data 
rates 

 

 

TABLE 3. Modeling the Relationship between Turbidity 

and SNR, Modulation Techniques, and BER 
Catego

ry 

Range 

(NTU) 

SNR 

Conditi
on 

Modulati

on 
Selection 

Bit 

Error 
Rate 

(BER) 

Descriptio

n 

Low ≤ 10 

NTU 

High 

SNR 
(small 

scatteri

ng and 

16QAM Low Optimal 

acoustic 
signal, 

maximum 

throughput 
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absorpt

ion) 

 

Mediu
m 

11 – 
100 

NTU 

Decrea

sing 

SNR 
(signifi

cant 

scatteri
ng) 

QPSK Mediu
m 

Compromi
se on 

throughput 

and 
robustness, 

additional 

filtering 
required 

 

High ≥ 101 
NTU 

Low 
SNR 

(strong 

scatteri
ng, 

signal 

degrada
tion) 

BPSK High Robust 
modulation 

recommen

ded, data 
rate drops 

drastically 

 
TABLE 4. Modeling the Relationship between DO and 

SNR, Modulation Techniques, and BER 
Catego
ry 

Range 
(mg/l) 

SNR 
Conditi

on 

Modulati
on 

Selection 

Bit 
Error 

Rate 

(BER) 

Descriptio
n 

Low ≤ 3 

mg/L 

SNR 

Decrea

sing 

BPSK High Sensor 

conditions 

are often 
unstable, 

requiring 

robust 
modulation

. 

Mediu
m 

4 – 8 
mg/L 

SNR 
Stable 

 

QPSK Mediu
m 

Optimal 
conditions 

 

High ≥ 9 

mg/L 

SNR 

tends to 

be 

stable/i
ncreasi

ng 

16QAM High The direct 

effect of 

DO is 

small, but 
a healthy 

environme

nt creates a 
more 

consistent 

signal. 

 

Based on the modeling in Tables 1 to 4, each 

water physicochemical parameter has a different 

effect on the quality of underwater communication 

channels. Temperature and salinity affect SNR 

through changes in conductivity and thermal 

phenomena, while turbidity degrades signal quality 

due to scattering and absorption. Dissolved oxygen 

(DO) plays a role in maintaining channel stability, 

although its direct effect on SNR is relatively small. 

Mapping low, medium, and high categories for 

each parameter allows the system to assess channel 

conditions and determine the appropriate adaptive 

modulation technique. 16QAM modulation is used 

for high SNR, QPSK for medium SNR, and BPSK for 

low SNR. The results of this modeling form the basis 

for the development of an adaptive communication 

system based on Sugeno Fuzzy Logic. 

 

 

 

2.3 Sugeno Fuzzy Logic Method 

The method used in this research is the Sugeno 

Fuzzy Inference System (FIS) to model the 

relationship between environmental parameters and 

the quality of underwater communication channels. 

The steps are described as follows: 

1. Fuzzyfication 

The membership functions for temperature, 

dissolved oxygen (DO), salinity, turbidity, and SNR 

output are illustrated in Figures 2–6. These 

membership functions define the fuzzy boundaries 

between low, moderate, and high categories and are 

constructed based on realistic mangrove water 

conditions as well as findings from previous 

underwater acoustic communication studies [1], [9], 

[10], [11]. The fuzzy sets are designed using 

trapezoidal and triangular functions to ensure 

smooth transitions between linguistic variables and 

to accommodate uncertainty in environmental 

measurements. 

1.1 Temperature 

Figure 2 illustrates the membership functions 

for the temperature variable. The temperature input 

is classified into three fuzzy sets: Low, Moderate, 

and High. Low temperature (≤ 25 °C) is associated 

with a high degree of membership, reflecting 

favorable channel conditions due to reduced thermal 

noise and lower signal attenuation. Moderate 

temperature (26–30 °C) represents transitional 

conditions where the channel remains relatively 

stable but begins to experience increased noise. High 

temperature (≥ 31 °C) corresponds to degraded 

channel conditions, where higher thermal activity 

causes increased attenuation and multipath 

distortion, leading to a reduction in the Signal-to-

Noise Ratio (SNR). This modeling aligns with 

underwater acoustic propagation theory, which 

states that temperature variations significantly 

influence sound speed and attenuation [1], [9], [10], 

[11]. 

 

 
FIGURE 2.  Temperature Membership Function 
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𝜇Low(𝑥) = {

 
 
 
 
 

1, 𝑥 ≤ 27
28−𝑥

28−27
, 27 < 𝑥 < 28

0, 𝑥 ≥ 28

 (2) 

 

𝜇Moderate(𝑥) =

{
 
 

 
 

 
 
 
 
 
 

0, 𝑥 ≤ 27
𝑥−27

28.5−27
, 27 < 𝑥 ≤ 28.5

30−𝑥

30−28.5
, 28.5 < 𝑥 < 30

0, 𝑥 ≥ 30

 (3) 

 

𝜇High(𝑥) = {

 
 
 
 

0, 𝑥 ≤ 29
𝑥−29

30−29
, 29 < 𝑥 < 30

1, 𝑥 ≥ 30

 (4) 

 

1.2 Dissolved oxygen (DO) 

The membership functions for dissolved oxygen 

(DO) are shown in Figure 3. DO is categorized into 

Low, Moderate, and High levels. Low DO (≤ 3 

mg/L) indicates unstable aquatic conditions that may 

increase particle movement and signal scattering, 

resulting in a decreasing SNR. Moderate DO (4–8 

mg/L) corresponds to stable environmental 

conditions, where acoustic propagation is less 

disturbed, producing a moderate SNR. High DO (≥ 

9 mg/L) is associated with healthy water conditions 

that tend to maintain channel stability, contributing 

to a higher SNR. Although the direct effect of DO 

on acoustic attenuation is limited, its indirect 

influence on environmental stability justifies its 

inclusion in the fuzzy model [10]. 

 

 
FIGURE 3.  Dissolved oxygen (DO) Membership 

Function 
 

𝜇Low(𝑥) = {

 
 
 
 

1, 𝑥 ≤ 3
4−𝑥

4−3
, 3 < 𝑥 < 4

0, 𝑥 ≥ 4

  (4) 

 

𝜇Moderate(𝑥) =

{
 
 

 
 

 
 
 
 
 
 

0, 𝑥 ≤ 4
𝑥−4

6−4
, 4 < 𝑥 ≤ 6

8−𝑥

8−6
, 6 < 𝑥 < 8

0, 𝑥 ≥ 8

  (5) 

 

𝜇High(𝑥) = {

 
 
 
 

0, 𝑥 ≤ 8
𝑥−8

9−8
, 8 < 𝑥 < 9

1, 𝑥 ≥ 9

  (6) 

 

1.3 Salinity 

Figure 4 presents the salinity membership 

functions, which are divided into Low, Moderate, 

and High categories. Low salinity (≤ 5 ppt) is 

associated with lower conductivity and reduced 

acoustic attenuation, resulting in higher SNR values. 

Moderate salinity (6–30 ppt) represents typical 

coastal and mangrove water conditions, where SNR 

remains relatively stable. High salinity (≥ 31 ppt) 

increases water density and conductivity, leading to 

higher absorption losses and reduced SNR, 

particularly at higher acoustic frequencies. This 

fuzzy modeling reflects established underwater 

acoustic channel characteristics reported in previous 

studies [1], [9], [10], [11]. 

 

 
FIGURE 4.  Salinity Membership Function 

 

 

𝜇Low(𝑥) = {

 
 
 
 

1, 𝑥 ≤ 5
10−𝑥

10−5
, 5 < 𝑥 < 10

0, 𝑥 ≥ 10

  (8) 

 

𝜇Moderate(𝑥) = {

 
 
 
 

0, 𝑥 ≤ 10
𝑥−10

20−10
, 10 < 𝑥 ≤ 20

30−𝑥

30−20
, 20 < 𝑥 < 30

0, 𝑥 ≥ 30

 (9) 

 

𝜇High(𝑥) = {

 
 
 
 

0, 𝑥 ≤ 30
𝑥−30

32−30
, 30 < 𝑥 < 32

1, 𝑥 ≥ 32

 (10) 
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1.4 Turbidity 

The turbidity membership functions are 

illustrated in Figure 5. Turbidity is classified into 

Low, Moderate, and High levels based on suspended 

particle concentration. Low turbidity (≤ 10 NTU) 

results in minimal scattering and absorption, 

allowing optimal signal propagation and high SNR. 

Moderate turbidity (11–100 NTU) introduces 

significant scattering effects, which gradually 

reduce SNR. High turbidity (≥ 101 NTU) causes 

severe signal degradation due to strong scattering 

and absorption, leading to a low SNR. This behavior 

is particularly relevant in mangrove environments, 

where sediment resuspension frequently occurs and 

strongly affects acoustic communication reliability 

[1], [9], [10], [11]. 

 

 
FIGURE 5.  Turbidity Membership Function 

 

𝜇Low(𝑥) = {

 
 
 
 

1, 𝑥 ≤ 20
40−𝑥

40−20
, 20 < 𝑥 < 40

0, 𝑥 ≥ 40

  (11) 

 

𝜇Moderate(𝑥) =

{
 
 

 
 

 
 
 
  
 
 

0, 𝑥 ≤ 20
𝑥−20

60−20
, 20 < 𝑥 ≤ 60

100−𝑥

100−60
, 60 < 𝑥 < 100

0, 𝑥 ≥ 100

 (12) 

 

𝜇High(𝑥) = {

 
 
 
 

0, 𝑥 ≤ 100
𝑥−100

120−100
, 100 < 𝑥 < 120

1, 𝑥 ≥ 120

 (13) 

 

1.5 SNR Output 

Figure 6 shows the membership functions for the 

SNR output variable, which is classified into Low, 

Moderate, and High categories. Low SNR (≤ 10 dB) 

represents poor channel conditions dominated by 

noise, requiring robust modulation techniques such 

as BPSK. Moderate SNR (11–15 dB) indicates 

relatively stable channel conditions where QPSK 

provides a balance between robustness and spectral 

efficiency. High SNR (≥ 15 dB) reflects favorable 

channel conditions with strong signal dominance, 

enabling the use of higher-order modulation such as 

16QAM to maximize data rate [20]. The SNR 

membership functions serve as the decision basis for 

adaptive modulation selection in the proposed 

Sugeno fuzzy system. 

 

 
FIGURE 6.  SNR Membership Function 

 

 

µ𝑙𝑜𝑤  (𝑥) = {

1   
10−𝑥

10−8

0

    
𝑥 ≤ 8

8 < 𝑥 < 10
𝑥 ≥ 10

   (14) 

𝜇Moderate(𝑥) =

{
 
 

 
 

 
 
 
 
 
 
 

0, 𝑥 ≤ 10
𝑥−10

13−10
, 10 < 𝑥 ≤ 13

15−𝑥

15−13
, 13 < 𝑥 < 15

0, 𝑥 ≥ 15

 (15) 

𝜇High(𝑥) = {

 
 
 
 

0, 𝑥 ≤ 14
𝑥−14

15−14
, 14 < 𝑥 < 15

1, 𝑥 ≥ 15

  (16) 

By explicitly defining and visualizing the 

membership functions for each environmental 

parameter and the SNR output, the proposed fuzzy 

system ensures transparency, interpretability, and 

consistency in the inference process. The graphical 

representation of these functions clarifies how 

environmental variations influence channel quality 

and supports the reliability of the adaptive 

modulation decision mechanism. 

 

2. Inference Rule 

The fuzzy rule base constructed consists of 81 

rules, representing all combinations of input 

variables: temperature, DO, salinity, and turbidity 

(3⁴ = 81). Each rule produces an output in the form 

of an SNR category classified into three levels: low, 

medium, and high. 

This SNR category reflects the quality of the 

communication channel based on tables 1, 2, 3, and 

4: 
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a) Low SNR indicates poor channel conditions 

with noise dominance, potentially resulting in a 

high bit error rate (BER). 

b) Medium SNR indicates intermediate channel 

conditions, where signal quality is relatively 

stable but still requires a compromise between 

noise resilience and spectral efficiency. 

c) High SNR indicates a good channel with a 

strong signal and minimal noise dominance, 

resulting in a low BER. 

The fuzzy inference process is performed using 

the product operator as a logical representation of 

AND to determine the firing strength of each rule. 

Next, the inference results are combined through an 

aggregation process and defuzzified using the 

Sugeno method to obtain the final SNR value in 

numerical form in the range 0–100. 

The SNR output results are the basis for 

selecting modulation techniques: 

a) At low SNR, systems tend to prefer low-order 

modulation (BPSK) because it is more robust 

against interference. 

b) At moderate SNR, intermediate modulation 

(QPSK) can be used, which balances 

throughput and noise robustness. 

c) At high SNR, higher-order modulation 

(16QAM) can be used to maximize spectral 

efficiency and data rate. 

 
TABLE 5. Rule base fuzzy 

No Suhu DO Salinitas Kekeruhan SNR 

1 

2 

3 

4 
5 

6 

7 
8 

9 

10 
11 

12 

13 
14 

15 

16 
17 

18 

19 
20 

21 

22 
23 

24 

25 
26 

27 

28 
29 

30 

31 
32 

33 

34 
35 

36 

37 

Low 

Low 

Low 

Low 
Low 

Low 

Low 
Low 

Low 

Low 
Low 

Low 

Low 
Low 

Low 

Low 
Low 

Low 

Low 
Low 

Low 

Low 
Low 

Low 

Low 
Low 

Low 

Med 
Med 

Med 

Med 
Med 

Med 

Med 
Med 

Med 

Med 

Low 

Low 

Low 

Low 
Low 

Low 

Low 
Low 

Low 

Med 
Med 

Med 

Med 
Med 

Med 

Med 
Med 

Med 

High 
High 

High 

High 
High 

High 

High 
High 

High 

Low 
Low 

Low 

Low 
Low 

Low 

Low 
Low 

Low 

Med 

Low 

Low 

Low 

Med 
Med 

Med 

High 
High 

High 

Low 
Low 

Low 

Med 
Med 

Med 

High 
High 

High 

Low 
Low 

Low 

Med 
Med 

Med 

High 
High 

High 

Low 
Low 

Low 

Med 
Med 

Med 

High 
High 

High 

Low 

Low 

Med 

High 

Low 
Med 

High 

Low 
Med 

High 

Low 
Med 

High 

Low 
Med 

High 

Low 
Med 

High 

Low 
Med 

High 

Low 
Med 

High 

Low 
Med 

High 

Low 
Med 

High 

Low 
Med 

High 

Low 
Med 

High 

Low 

Low 

Low 

Low 

Low 
Low 

Low 

Low 
Low 

Low 

Med 
Med 

Low 

Med 
Med 

Low 

Med 
Med 

Low 

High 
Med 

Low 

High 
Med 

Low 

High 
Med 

Low 

Low 
Low 

Low 

Low 
Low 

Low 

Low 
Low 

Low 

Med 

38 

39 

40 

41 
42 

43 

44 
45 

46 

47 
48 

49 

50 
51 

52 

53 
54 

55 

56 
57 

58 

59 
60 

61 

62 
63 

64 

65 
66 

67 

68 
69 

70 

71 
72 

73 

74 
75 

76 

77 

78 

79 

80 
81 

Med 

Med 

Med 

Med 
Med 

Med 

Med 
Med 

Med 

Med 
Med 

Med 

Med 
Med 

Med 

Med 
Med 

High 

High 
High 

High 

High 
High 

High 

High 
High 

High 

High 
High 

High 

High 
High 

High 

High 
High 

High 

High 
High 

High 

High 

High 

High 
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The predicted SNR value is then used as the basis 

for selecting an adaptive modulation technique. In 

high SNR conditions (≥ 15 dB), the system 

recommends the use of high-order modulation 

(16QAM) to maximize data rates. When the SNR is 

in the medium category (11–15 dB), the system 

selects QPSK modulation because it offers a balance 

between efficiency and noise resistance. Meanwhile, 

in low SNR (≤ 10 dB), the system switches to BPSK 

modulation, which is more robust against 

interference. This approach allows the system to 

dynamically adapt to varying channel conditions, 

thus maintaining optimal underwater 

communication quality. 

 

3. Defuzzyfication 

The final SNR value is calculated using the 

weighted average method according to Sugeno's 

formulation: 

 

𝑆𝑁𝑅 =  
∑𝑖=1
81 𝜔𝑖𝑧𝑖

∑𝑖=1
81  𝜔𝑖

   (1) 

 

Where: 
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ωi = membership degree (weight) of the i-th rule 

zi = crisp output value generated from the i-th rule 

 

2.4 Simulation Test Data 

This study uses simulation data compiled based 

on a range of physicochemical parameter values that 

represent the general conditions of mangrove 

waters. 

This simulation data was used because the 

research focused on conceptual modeling and testing 

of the Sugeno Fuzzy Inference System, rather than 

direct field measurements. The range of values used 

represents realistic conditions in mangrove waters. 

Four main parameters were used as system 

inputs: temperature (°C), dissolved oxygen (DO) in 

mg/L, salinity (ppt), and turbidity (NTU). This data 

was then used to test the model's response to various 

waterway conditions. 

 
TABLE 6. Simulation Test Data 

No Temperature 
(°C) 

DO 
(mg/L) 

Salinity 
(ppt) 

Turbidity 
(NTU) 

1 28 5 15 20 

2 24 7 4 8 

3 32 4 20 120 
4 20 2 2 3 

5 26 3 31 90 

 

Each parameter combination is processed to 

generate variations in underwater channel 

conditions, which are used as input to the fuzzy 

system. The system outputs a predicted Signal-to-

Noise Ratio (SNR) value, which is then used as the 

basis for modulation technique recommendations. 

 

III.RESULT AND DISCUSSION 

This chapter presents the results of the 

implementation and testing of the Sugeno Fuzzy 

system in modeling the influence of aquatic 

environmental parameters on the quality of 

underwater communication channels. Through 

simulations, the system is tested to assess the 

accuracy of the fuzzy rules and its adaptability in 

determining the appropriate modulation technique 

based on the SNR value. The discussion covers three 

main parts: system modeling, fuzzy logic 

implementation, and overall system performance 

analysis. 

3.1 System Modeling Analysis 

The test was conducted through simulations 

with input data in the form of water physicochemical 

parameters, including temperature, salinity, 

dissolved oxygen (DO), and turbidity. The data was 

processed using the Sugeno Fuzzy Inference System 

(FIS) method to produce output in the form of a 

predicted Signal-to-Noise Ratio (SNR) value. The 

SNR value was then classified into three categories: 

Low, Medium, and High, as the basis for selecting 

the appropriate modulation technique. 

In the simulation test data (Table 5), the input 

data used were: temperature 28 °C, DO 5 mg/L, 

salinity 15 ppt, and turbidity 20 NTU. Based on the 

modeling in Tables 1–4, all four parameters are in 

the Med category, indicating a channel condition 

with a Med SNR. The results of processing using the 

fuzzy system produced a predicted SNR value of 

12.5 dB, so the system automatically recommended 

the use of QPSK modulation. The system output 

results are shown in Figure 7. 

 

 
 

FIGURE 7.  The results of the fuzzy system output 

testing are in the form of SNR values and modulation 

technique recommendations. 
 

The simulation results show that the system is 

able to adapt to the underwater communication 

channel conditions. Under normal temperature 

conditions (26–30 °C), medium salinity (6–30 PSU), 

Med turbidity (11–100 NTU), and DO within the 

optimal range (4–8 mg/L), the resulting SNR value 

is in the Med category. This condition indicates that 

the channel is still quite stable, but there is potential 

noise that can increase the bit error rate (BER) if 

High order modulation is used. Therefore, the 

selection of QPSK modulation in this scenario is 

considered appropriate because it is able to maintain 

a balance between throughput and resistance to 

noise. 

Furthermore, these results confirm that the 

Sugeno fuzzy system can adaptively adjust 

modulation techniques based on varying aquatic 

environmental conditions. This approach makes 

underwater communications more efficient and 

reliable, especially under changing channel 

conditions. 

 

3.2 Implementation of Sugeno Fuzzy Logic 

The implementation of the Sugeno Fuzzy Logic 

method was carried out to test whether the inference 

rules (rule base) developed accurately represented 

the relationship between water physicochemical 

parameters and underwater communication channel 

conditions. The inference process used four input 

variables: temperature, dissolved oxygen (DO), 

salinity, and turbidity, each of which was divided 

into three fuzzy categories: Low, Med, and High. 

The simulation test data used refers to Table 5, 

with several scenarios representing different water 

conditions. Each input combination is processed 

through the Sugeno FIS system to produce a Signal-

to-Noise Ratio (SNR) value in the Low, Medium, or 

High categories. Based on the SNR category, the 
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system automatically determines the most 

appropriate modulation technique: BPSK, QPSK, or 

16QAM. 

The results of the fuzzy implementation are 

shown in Table 7, which shows the relationship 

between the simulation input data and the system 

output based on the active fuzzy rules. 

The table shows that the system's inference 

results align with the logical relationships built into 

the fuzzy rule base. Under Med parameter 

conditions (scenario 1), the system produces Med 

SNR and selects QPSK as the optimal modulation. 

Meanwhile, under extreme conditions such as high 

temperature and turbidity (scenario 3), the system 

downgrades to BPSK to maintain communication 

reliability. 

In case 1, with a temperature of 28 °C, DO 5 

mg/L, salinity 15 ppt, and turbidity 20 NTU, the 

system produces a Med SNR so it is recommended 

to use QPSK modulation. This result is in 

accordance with the 41st fuzzy rule with Med 

output. These parameter conditions describe a 

relatively stable channel, with a moderate noise 

level, so the fuzzy method is proven to be able to 

provide output that matches the actual channel 

conditions. 
 

TABLE 7. System Test Results 

 

 

In case 2, the temperature values of 24 °C, DO 

7 mg/L, salinity 4 ppt, and turbidity 8 NTU produce 

High SNR with a recommended 16QAM 

modulation. This result arises from the 12th fuzzy 

rule with a High output, which describes ideal 

channel conditions: cool temperature, High oxygen, 

Low salinity, and clear water. This confirms that the 

system is able to recognize channel conditions with 

optimal signal quality and responds by selecting a 

High-order modulation that is efficient with 

bandwidth. 

In case 3, with a temperature of 32 °C, DO 4 

mg/L, salinity 20 ppt, and turbidity 120 NTU, a Low 

SNR was obtained with BPSK modulation 

recommendations, in accordance with the 67th fuzzy 

rule. This condition indicates channel degradation 

due to High temperatures and extreme turbidity, 

which increases signal attenuation and decreases the 

signal to noise ratio. The selection of BPSK is 

appropriate because it has better resilience to 

channel interference. 

In case 4, a temperature of 20 °C, DO of 2 mg/L, 

salinity of 2 ppt, and turbidity of 3 NTU resulted in 

a Low SNR with the 5th active rule. The low DO 

value indicates a lack of stability in the aquatic 

environment, which results in a decrease in signal 

propagation quality. The system successfully 

classifies this condition into the poor channel 

category, so BPSK modulation is again the most 

appropriate choice. 

In case 5, with a temperature of 26 °C, DO 3 

mg/L, salinity 31 ppt, and turbidity 90 NTU, the 

system produces a Low SNR output with the 52nd 

fuzzy rule. High salinity increases water 

conductivity and causes greater signal attenuation, 

while DO and turbidity worsen the channel 

condition. These results indicate that the fuzzy 

system is able to identify the dominant factors that 

affect transmission performance. 

Overall, the test results show that the designed 

fuzzy rule base works well and is consistent with the 

physicochemical conditions of the waters. The 

Sugeno FIS system successfully classifies channel 

conditions accurately and provides adaptive 

modulation recommendations that are in accordance 

with the resulting SNR level. This proves that the 

model with the Sugeno fuzzy approach is able to 

represent the nonlinear relationship between 

environmental parameters and the quality of 

underwater communication channels with a good 

level of accuracy, and can be used as a basis for 

automatic modulation control in acoustic 

communication systems in dynamic environments 

such as mangrove ecosystems. 

 

3.3 System Performance Analysis 

Test results show that the Sugeno Fuzzy-based 

system has adaptive capabilities in determining 

modulation techniques appropriate to underwater 

communication channel conditions. This 

mechanism functions to suppress the Bit Error Rate 

(BER) and maintain data transmission efficiency by 

selecting modulation based on the Signal-to-Noise 

Ratio (SNR) value resulting from the water's 

physicochemical parameters. 

In High SNR conditions (≥ 15 dB), the system 

recommends the use of High-order modulation 

(16QAM) to maximize data rates. When the SNR is 

in the Med category (11–15 dB), the system chooses 

QPSK modulation because it offers a balance 

between efficiency and resilience to noise. 

Meanwhile, in Low SNR (≤ 10 dB), the system 

switches to BPSK modulation which is more robust 

against interference. With this adaptation 

mechanism, underwater acoustic communication 

becomes more reliable and efficient, especially in 

mangrove ecosystems that have High environmental 

dynamics and unpredictable channel characteristics. 

Tem

perat

ure 

(°C) 

DO 
(mg/

L) 

Salini
ty 

(ppt) 

Turbi

dity 

(NT

U) 

SNR 

Predi

ction 

(dB) 

Rule 

Fuzzy/
SNR 

Catego

ration 

 

Modulatio
n 

Recomme

ndations 

28 5 15 20 12,5 
Rule 41 
/ Med 

QPSK 

24 7 4 8 18,2 
Rule 12 

/ High 
16QAM 

32 4 20 120 7,8 
Rule 67 

/ Low 
BPSK 

20 2 2 3 5,0 
Rule 5 
/ Low 

BPSK 

26 3 31 90 9,5 
Rule 52 

/ Low 
BPSK 



Sholihah Ayu Wulandari: Fuzzy Sugeno Model for SNR-Based Adaptive Modulation in 
Underwater Acoustic Communication 

 

68 
© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more 

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 

The test results in Table 7 show that the Fuzzy 

Sugeno system is able to accommodate various 

water environmental conditions consistently. In the 

first scenario, the SNR value is in the Med category 

so the system recommends QPSK modulation. In the 

second scenario, optimal environmental conditions 

produce a High SNR, allowing the use of 16QAM to 

increase throughput. Conversely, in the third 

scenario, High temperatures and high turbidity 

levels reduce the SNR to the Low category, and the 

system automatically selects BPSK as the most 

noise-resistant modulation technique. 

The comparison of Bit Error Rate (BER) and 

Signal-to-Noise Ratio (SNR) performance for 

conventional models with the adaptive model 

created is shown in Figure 8. The black curve depicts 

the theoretical performance in the conventional 

BPSK model, red for QPSK, and the blue curve for 

16QAM. The simulation results show that the higher 

the modulation order, the greater the SNR 

requirement to achieve a low BER. The five test 

points on the graph show that the Fuzzy Sugeno 

system is able to follow the dynamics of water 

channel variations well. 

 

 
 

FIGURE 8.  SNR vs BER Test results compared 

with theory 
 

For example, at the first point, the system 

recommends using QPSK when the SNR is in the 

Med category. As channel conditions improve and 

the SNR increases, the system switches to 16QAM 

to improve transmission efficiency. Conversely, 

when the channel degrades due to increased 

temperature or turbidity, the system downgrades the 

modulation rate to BPSK to maintain 

communication reliability. 

The modulation change pattern indicates that 

the system is capable of adaptively adjusting 

modulation techniques to changing aquatic 

environmental conditions. Thus, the Fuzzy Sugeno 

approach has proven effective in accommodating the 

uncertainty and dynamics of underwater acoustic 

channels, as well as improving communication 

performance through the selection of appropriate 

modulation schemes in real-time. For further 

research, this system needs to be tested 

experimentally in the field with integration on real 

underwater communication devices to validate the 

effectiveness of modulation adaptation in more 

complex and dynamic environmental conditions. 

 

3.4 Results and Discussion 

The results obtained in this study are consistent 

with several previous works on adaptive modulation 

and environment-aware underwater acoustic 

communication. Stojanovic and Preisig [1] 

emphasized that underwater channel quality is 

strongly influenced by environmental parameters 

and exhibits highly nonlinear behavior, which 

supports the use of intelligent modeling approaches 

such as fuzzy logic. 

Kumar et al. [2],  Akyildiz et al. [10], and 

Wulandari et al [5] highlighted that conventional 

fixed-modulation schemes are inefficient in 

dynamic underwater environments, particularly in 

shallow and coastal waters. The proposed Sugeno 

Fuzzy-based adaptive modulation model addresses 

this limitation by dynamically adjusting the 

modulation scheme based on environmental 

conditions. 

Compared to machine learning-based adaptive 

modulation approaches such as reinforcement 

learning or neural networks [13], [15], the proposed 

Sugeno FIS offers lower computational complexity, 

better interpretability, and faster decision-making, 

making it more suitable for real-time underwater 

acoustic systems with limited processing capability. 

In contrast to previous modulation based studies 

that rely solely on SNR estimation [5], [6], [15], 

[20], this research incorporates physicochemical 

water parameters (temperature, salinity, DO, and 

turbidity) as direct inputs, enabling earlier channel 

quality prediction before severe degradation occurs. 

This contribution is particularly relevant for highly 

dynamic environments such as mangrove waters. 

 

IV.CONCLUSION  

This study successfully demonstrates that the 

Sugeno Fuzzy Inference System can effectively 

model the relationship between water 

physicochemical parameters: temperature, salinity, 

dissolved oxygen, and turbidity, and underwater 

acoustic channel quality. The proposed model 

accurately predicts SNR levels and enables adaptive 

modulation selection between BPSK, QPSK, and 

16QAM according to channel conditions. 

Simulation results confirm that the adaptive scheme 

reduces BER and improves communication 

reliability in dynamic mangrove water 

environments. Therefore, the Sugeno fuzzy-based 

approach is suitable as a lightweight and 

interpretable solution for real-time adaptive 

underwater acoustic communication systems. 
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