Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 12 No. 2 Tahun 2025 ISSN: 2580-2291

Received November 21st 2025; accepted December 24th 2025. Date of publication December 31st 2025
Digital Object Identifier: https://doi.org/10/25047/jtit.v12i2.466

Fuzzy Sugeno Model for SNR-Based Adaptive
Modulation in Underwater Acoustic
Communication

SHOLIHAH AYU WULANDARI!, AHMAD HARIS HASANUDDIN SLAMET?

12politeknik Negeri Jember, Jember, Indonesia

CORESPONDING AUTHOR: SHOLIHAH AYU WULANDARI (email:sholihah.ayuwulan@polije.ac.id)

ABSTRACT Underwater communication faces significant challenges due to the dynamic
characteristics of the channel and is strongly influenced by the physicochemical parameters of the
water. This study proposes channel quality modeling using the Sugeno Fuzzy Inference System
(FIS) with input variables of temperature, salinity, dissolved oxygen (DO), and turbidity. The
system produces a Signal-to-Noise Ratio (SNR) output that is used as a basis for channel quality
mapping, Bit Error Rate (BER) estimation, and the selection of adaptive modulation techniques
(BPSK, QPSK, or 16QAM). Simulation results show that the Sugeno fuzzy model is able to follow
the theoretical pattern well, where increasing temperature, salinity, and turbidity decrease the SNR
value, while DO plays a role in maintaining channel stability. Based on the test results, at high SNR
(= 15 dB) the system recommends 16QAM, at medium SNR (11-15 dB) QPSK, and at low SNR
(< 10 dB) BPSK. This approach has proven effective in suppressing BER and increasing the
reliability of underwater acoustic communications in fluctuating mangrove water environments.
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LINTRODUCTION

Underwater acoustic communication is an
important technology that plays a role in supporting
various marine activities, such as monitoring the
quality of the aquatic environment, controlling
underwater vehicles, underwater sensor networks,
and collecting oceanographic data [1], [2], [3], [4].
In contrast to wireless communication on land that
uses radio waves, underwater communication relies
on acoustic waves as the main transmission medium
because radio waves and light experience very high
attenuation in water, making it inefficient for long-
distance communication [1], [5], [6].

However, underwater acoustic channels have
much more complex characteristics than airborne
channels. Sound wave propagation in water
experiences long delays, increasing attenuation with
distance and frequency, and limited bandwidth.
Furthermore, the phenomenon of multipath
propagation due to wave reflections from the surface
and seabed causes signal distortion and interference
between propagation paths [1]. These conditions
make acoustic communication channels nonlinear,

highly dynamic, and dependent on time and aquatic
environmental conditions [7], [8], [9].

In shallow waters, the complexity of the
channel increases because it is influenced by the
physico-chemical parameters of the water, including
temperature, dissolved oxygen (DO), turbidity, and
salinity [9], [10], [11]. Water temperature affects the
speed of sound wave propagation, where an increase
in temperature causes an increase in propagation
speed and can cause refraction of sound waves due
to temperature differences between water layers.
The DO parameter also plays an important role,
because high levels of dissolved oxygen are
generally correlated with increased biological
activity and particle movement in the water which
has the potential to cause density fluctuations and
scattering of acoustic signals. Turbidity affects wave
propagation through the process of scattering and
absorption of energy by suspended particles, thereby
reducing the intensity of the received signal.
Meanwhile, salinity determines the density of water;
the higher the salinity, the faster the sound wave
propagation, but accompanied by increased
attenuation, especially at high frequencies [1].
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These four parameters simultaneously cause
fluctuations in the Signal-to-Noise Ratio (SNR) and
changes in channel characteristics within a relatively
short time span, especially in coastal areas and
highly dynamic mangrove ecosystems [10], [11],
[12]. These SNR fluctuations have a direct impact
on communication system performance, as indicated
by an increase in the Bit Error Rate (BER) and a
decrease in data transmission efficiency [13].

Most  existing  underwater  acoustic
communication systems still use static modulation
schemes such as Binary Phase Shift Keying (BPSK),
Quadrature Phase Shift Keying (QPSK), and 16-
Quadrature Amplitude Modulation (16QAM).
These conventional approaches are unable to adapt
to changing channel conditions, resulting in
suboptimal performance. To overcome these
limitations, the concept of adaptive modulation was
introduced, which allows the system to dynamically
adjust the modulation type based on channel
conditions represented by the SNR value [5], [14],
[15]

Building an accurate mathematical model to
represent the relationship between water physico-
chemical parameters and SNR values is a challenge
in itself, considering that the relationship is
complex, nonlinear, and influenced by natural
environmental uncertainties. In this context, the
fuzzy inference system approach is a promising
alternative because it is able to model nonlinear
relationships and handle environmental data
uncertainty efficiently [16][17]. In particular, the
Sugeno Fuzzy model has advantages in
computational efficiency, stability of results, and
ease of implementation in real-time adaptive
systems [18], [19].

Therefore, this study proposes a Fuzzy
Sugeno-based adaptive modulation model for
underwater acoustic communication systems by
considering the influence of water physico-chemical
parameters, namely temperature, dissolved oxygen
(DO), turbidity, and salinity. This model is used to
predict SNR values based on variations in
environmental parameters, which are then used as a
basis for determining the most appropriate
modulation type (BPSK, QPSK, or 16QAM)
adaptively. This modeling is expected to be able to
maintain a balance between Bit Error Rate (BER)
and data rate, while increasing the efficiency and
reliability of underwater acoustic communication in
dynamic channel conditions, especially in
environments with complex characteristics such as
mangrove waters [20].

ILMETHOD

This study uses the Sugeno Fuzzy Logic
approach to model the relationship between water
physicochemical parameters and the quality of
underwater communication channels. The research
methodology consists of four main stages: system
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simulation flow, system modeling, model design
with Sugeno fuzzy logic, and simulation data
testing.

2.1 System Simulation

The underwater acoustic communication system
simulation is designed to model the digital data
transmission process through underwater acoustic
channels characterized by multipath and Gaussian
noise with complex characteristics such as
mangrove waters. Figure 1 shows the system
workflow.

Underwater acoustic channels in shallow waters
have multipath characteristics due to the reflection
of sound waves by the surface and bottom of the
water. In this simulation, the channel is represented
by a three-path impulse response with relative
amplitude coefficients h = [0.8, 0.4, 0.2], which
describe the direct signal and two primary
reflections. The model reflects the realistic
conditions of shallow channels that are susceptible
to inter-symbol interference (ISI).

The environmental noise is modeled as
Additive White Gaussian Noise (AWGN) with a
zero-mean normal distribution. Thus, the received
signal is expressed as:

r(t) = h*s(t) +n(t) ()

with s(t) the modulated signal, h the channel impulse
response, and n(t) the Gaussian noise.

2.2 System Modeling

The system modeling in this study is designed to
link the physicochemical parameters of mangrove
waters with the quality of underwater communication
channels, particularly in terms of bit error rate (BER)
and the selection of optimal modulation techniques.
This system receives input in the form of data from
measurements of temperature, salinity, dissolved
oxygen (DO), and turbidity obtained from
environmental sensors. The data is then processed
through a normalization stage and processed using a
fuzzy inference system (FIS) to produce output in the
form of a Signal-to-Noise Ratio (SNR) value. This
SNR value is the basis for mapping channel quality,
estimating the BER level, and recommending the
selection of appropriate modulation techniques.
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FIGURE 1. System workflow of the proposed Fuzzy
Sugeno-based adaptive modulation scheme

To illustrate the relationship between water
physicochemical parameters and underwater
communication channel conditions, fuzzy categories
were developed for each input variable. These
categories were divided into three levels (low,
normal/medium, and high) with value ranges tailored
to the characteristics of the aquatic environment.
Each category was then mapped to SNR conditions,
appropriate modulation choices, and BER level
estimates. A summary of the modeling is presented in
Tables 1 to 4 below.

TABLE 1. Modeling the Relationship between
Temperature and SNR, Modulation Techniques, and

BER
Catego  Range SNR Modulati  Bit Descriptio
ry (°C) Conditi  on Error n
on Selection  Rate
(BER)
Low <25°C High 16QAM Low High
SNR spectral
(low efficiency,
noise, suitable for
strong high
signal) throughput
Mediu 26-30 SNR QPSK Mediu  Safe to
m °C (still m use,
quite compromis
high) es speed
and noise
resistance
High >31°C  Low BPSK High Robust
SNR against
(increas noise, even
ed at lower
noise, data rates
thermal
distorti
on)

TABLE 2. Modeling the Relationship between Salinity
and SNR, Modulation Techniques, and BER

Catego  Range SNR Modulati  Bit Descriptio
ry (ppt) Conditi  on Error n
on Selection  Rate
(BER)
Low <5ppt High 16QAM Low Suitable
SNR for high
(low throughput
conduct , high-
ivity, order
therefor modulation
e low remains
noise) stable
Mediu 6-30 Stable— QPSK Mediu  Medium
m ppt Mediu m Compromi
m SNR se between
speed and
noise
robustness
High >31ppt Low BPSK High Robust
SNR against
(high noise,
conduct despite
ivity, lower data
thus rates
increasi
ng
noise)

TABLE 3. Modeling the Relationship between Turbidity
and SNR, Modulation Techniques, and BER

Catego  Range SNR Modulati ~ Bit Descriptio
ry (NTU) Conditi  on Error n
on Selection  Rate
(BER)
Low <10 High 16QAM Low Optimal
NTU SNR acoustic
(small signal,
scatteri maximum
ng and throughput
61
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absorpt
ion)
Mediu 11— QPSK Mediu  Compromi
m 100 Decrea m se on
NTU sing throughput
SNR and
(signifi robustness,
cant additional
scatteri filtering
ng) required
High >101 Low BPSK High Robust
NTU SNR modulation
(strong recommen
scatteri ded, data
ng, rate drops
signal drastically
degrada

tion)

TABLE 4. Modeling the Relationship between DO and

SNR, Modulation Techniques, and BER

Catego  Range SNR Modulati  Bit Descriptio
ry (mg/1) Conditi  on Error n
on Selection  Rate
(BER)
Low <3 SNR BPSK High Sensor
mg/L Decrea conditions
sing are often
unstable,
requiring
robust
modulation
Mediu 4-8 SNR QPSK Mediu  Optimal
m mg/L Stable m conditions
High >9 SNR 16QAM High The direct
mg/L tends to effect of
be DO is
stable/i small, but
ncreasi a healthy
ng environme

nt creates a
more
consistent
signal.

Based on the modeling in Tables 1 to 4, each
water physicochemical parameter has a different
effect on the quality of underwater communication
channels. Temperature and salinity affect SNR
through changes in conductivity and thermal
phenomena, while turbidity degrades signal quality
due to scattering and absorption. Dissolved oxygen
(DO) plays a role in maintaining channel stability,
although its direct effect on SNR is relatively small.

Mapping low, medium, and high categories for
each parameter allows the system to assess channel
conditions and determine the appropriate adaptive
modulation technique. 16QAM modulation is used
for high SNR, QPSK for medium SNR, and BPSK for
low SNR. The results of this modeling form the basis
for the development of an adaptive communication
system based on Sugeno Fuzzy Logic.
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2.3 Sugeno Fuzzy Logic Method

The method used in this research is the Sugeno
Fuzzy Inference System (FIS) to model the
relationship between environmental parameters and
the quality of underwater communication channels.
The steps are described as follows:

1. Fuzzyfication

The membership functions for temperature,
dissolved oxygen (DO), salinity, turbidity, and SNR
output are illustrated in Figures 2-6. These
membership functions define the fuzzy boundaries
between low, moderate, and high categories and are
constructed based on realistic mangrove water
conditions as well as findings from previous
underwater acoustic communication studies [1], [9],
[10], [11]. The fuzzy sets are designed using
trapezoidal and triangular functions to ensure
smooth transitions between linguistic variables and
to accommodate uncertainty in environmental
measurements.
1.1 Temperature

Figure 2 illustrates the membership functions
for the temperature variable. The temperature input
is classified into three fuzzy sets: Low, Moderate,
and High. Low temperature (< 25 °C) is associated
with a high degree of membership, reflecting
favorable channel conditions due to reduced thermal
noise and lower signal attenuation. Moderate
temperature (26-30 °C) represents transitional
conditions where the channel remains relatively
stable but begins to experience increased noise. High
temperature (> 31 °C) corresponds to degraded
channel conditions, where higher thermal activity
causes increased attenuation and multipath
distortion, leading to a reduction in the Signal-to-
Noise Ratio (SNR). This modeling aligns with
underwater acoustic propagation theory, which
states that temperature variations significantly
influence sound speed and attenuation [1], [9], [10],

[11].
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FIGURE 2. Temperature Membership Function
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1.2 Dissolved oxygen (DO)

The membership functions for dissolved oxygen
(DO) are shown in Figure 3. DO is categorized into
Low, Moderate, and High levels. Low DO (< 3
mg/L) indicates unstable aquatic conditions that may
increase particle movement and signal scattering,
resulting in a decreasing SNR. Moderate DO (4—8
mg/L) corresponds to stable environmental
conditions, where acoustic propagation is less
disturbed, producing a moderate SNR. High DO (>
9 mg/L) is associated with healthy water conditions
that tend to maintain channel stability, contributing
to a higher SNR. Although the direct effect of DO
on acoustic attenuation is limited, its indirect
influence on environmental stability justifies its
inclusion in the fuzzy model [10].
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1.3 Salinity

Figure 4 presents the salinity membership
functions, which are divided into Low, Moderate,
and High categories. Low salinity (< 5 ppt) is
associated with lower conductivity and reduced
acoustic attenuation, resulting in higher SNR values.
Moderate salinity (6-30 ppt) represents typical
coastal and mangrove water conditions, where SNR
remains relatively stable. High salinity (> 31 ppt)
increases water density and conductivity, leading to
higher absorption losses and reduced SNR,
particularly at higher acoustic frequencies. This
fuzzy modeling reflects established underwater
acoustic channel characteristics reported in previous
studies [1], [9], [10], [11].
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1.4 Turbidity

The turbidity membership functions are
illustrated in Figure 5. Turbidity is classified into
Low, Moderate, and High levels based on suspended
particle concentration. Low turbidity (< 10 NTU)
results in minimal scattering and absorption,
allowing optimal signal propagation and high SNR.
Moderate turbidity (11-100 NTU) introduces
significant scattering effects, which gradually
reduce SNR. High turbidity (> 101 NTU) causes
severe signal degradation due to strong scattering
and absorption, leading to a low SNR. This behavior
is particularly relevant in mangrove environments,
where sediment resuspension frequently occurs and
strongly affects acoustic communication reliability

(11, [9], [10], [11].
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FIGURE 5. Turbidity Membership Function

1, x <20
40—-x
Hiow(X) =1 70500 20 <x <40 (11
0, x =40
0, x <20
- B 20<x <60
HModerate (X) = o0 (12)
Hoderate 100=% 06 < x < 100
100-60
0, x > 100
0, x <100
—-100
Hrigh(X) = Tyo—00, 100 <x <120 (13)
1, x>120

1.5 SNR Output

Figure 6 shows the membership functions for the
SNR output variable, which is classified into Low,
Moderate, and High categories. Low SNR (< 10 dB)
represents poor channel conditions dominated by
noise, requiring robust modulation techniques such
as BPSK. Moderate SNR (11-15 dB) indicates
relatively stable channel conditions where QPSK
provides a balance between robustness and spectral
efficiency. High SNR (> 15 dB) reflects favorable
channel conditions with strong signal dominance,
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enabling the use of higher-order modulation such as
16QAM to maximize data rate [20]. The SNR
membership functions serve as the decision basis for
adaptive modulation selection in the proposed
Sugeno fuzzy system.
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By explicitly defining and visualizing the
membership functions for each environmental
parameter and the SNR output, the proposed fuzzy
system ensures transparency, interpretability, and
consistency in the inference process. The graphical
representation of these functions clarifies how
environmental variations influence channel quality
and supports the reliability of the adaptive
modulation decision mechanism.

2. Inference Rule

The fuzzy rule base constructed consists of 81
rules, representing all combinations of input
variables: temperature, DO, salinity, and turbidity
(3* = 81). Each rule produces an output in the form
of an SNR category classified into three levels: low,
medium, and high.

This SNR category reflects the quality of the
communication channel based on tables 1, 2, 3, and
4:
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a) Low SNR indicates poor channel conditions 38 Med Med Low Med Med
with noise dominance, potentially resulting in a 39 Med  Med  Low High Low
high bit error rate (BER) 40 Med Med Med Low Med
1gh b1 et - . 41 Med Med Med Med Med
b) Medium SNR indicates intermediate channel 42 Med Med Med High Low
conditions, where signal quality is relatively 43 Med Med High Low Med
stable but still requires a compromise between 44 Med  Med  High Med Med
. i d tral effici 45 Med Med High High Low
noise resilience and spectral efficiency. 46 Med High Low Low High
c¢) High SNR indicates a good channel with a 47  Med High Low Med Med
strong signal and minimal noise dominance, 48 Med High Low High Low
resulting in a low BER. 49 Med  High Med Low High
The f g1n . < erformed usi 50 Med High Med Med Med
e fuzzy inference process is performed using 51 Med High Med High Low
the product operator as a logical representation of 52  Med High High Low High
AND to determine the firing strength of each rule. 53 Med High High Med Med
Next, the inference results are combined through an 34 Med  High  High High Low
. d defuzzified . h 55 High Low  Low Low Low
aggregation process and defuzzified using the 56 High Low Low Med Low
Sugeno method to obtain the final SNR value in 57  High Low Low High Low
numerical form in the range 0—100. 58 High Low  Med Low Low
The SNR output results are the basis for 59 High  Low  Med Med Low
. . P . . 60 High Low  Med High Low
selecting modulation techniques: 61 High Low High Low Low
a) At low SNR, systems tend to prefer low-order 62  High Low High Med Low
modulation (BPSK) because it is more robust 63 High Low  High High Low
against interference. 64 High Med Low Low Med
b) At derate SNR. int diat dulati 65 High Med Low Med Med
) moderate , intermediate modulation 66 High Med Low High Low
(QPSK) can be wused, which balances 67 High Med Med Low Med
throughput and noise robustness. 68  High Med Med Med Med
¢) At high SNR, higher-order modulation 69 High  Med  Med High Cow
.. 70 High Med High Low Med
(16QAM) can be used to maximize spectral 71 High Med High Med Med
efficiency and data rate. 72 High Med High High Low
73 High High Low Low High
TABLE 5. Rule base fuzzy 74 High  High Low Med Med
No Suhu DO Salinitas Kekeruhan  SNR 75 H}gh H{gh Low High L(_)W
I Low Low Low  Low Low 76 High High = Med — Low High
2 Low Low Low Med Low 7 H}gh H%gh Med Med Med
3 Low Low  Low High Low 78 H}gh H%gh Med High L(.)W
4 Low Low Med Low Low 7 H}gh H¥gh H¥gh Low High
5  Low Low Med Med Low 80 High High High — Med Med
6 Low Low Med High Low 81 High High High High Low
7 Low Low  High Low Low ] ) ]
8 Low Low High Med Low The predicted SNR value is then used as the basis
?0 EOW k/f‘z f‘gh E‘gh k/f‘z for selecting an adaptive modulation technique. In
ow (& oW oW € - ..
>
11  Low Med Low Med Med high SNR conditions (> '15 dB), the syst@m
12 Low Med Low High Low recommends the use of high-order modulation
13 Low Med Med Low Med (16QAM) to maximize data rates. When the SNR is
1‘5‘ 1L~0W mej mej ?’11_3?1 i’led in the medium category (11-15 dB), the system
ow N © ' oW selects QPSK modulation because it offers a balance
16 Low Med High Low Med A X X K
17 Low Med High Med Med between efficiency and noise resistance. Meanwhile,
18 TLow Med High High Low in low SNR (< 10 dB), the system switches to BPSK
19 Low High Low Low High modulation, which is more robust against
20 Low  High Low Med Med . £ Thi h all h
21 Low High Low High Low nter erence. 1s approach allows the syst.er.n to
22 Low High Med Low High dynamically adapt to varying channel conditions,
23 Low High Med Med Med thus maintaining optimal underwater
24 Low High Med High Low communication quality.
25 Low  High High Low High
26 Low  High High Med Med .
27 Low  High High High Low 3. Defuzzyfication
28 Med Low Low Low Low The final SNR value is calculated using the
29 Med  Low  Low Med Low weighted average method according to Sugeno's
30 Med Low Low High Low formulation:
31 Med Low Med Low Low ’
32 Med Low Med Med Low o1
33 Med Low Med High Low SNR = Zi;}wizi (1)
34 Med Low High Low Low > w;
35 Med Low  High Med Low
36 Med Low High High Low .
37 Med Med Low  Low Med Where:
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i = membership degree (weight) of the i-th rule
zi = crisp output value generated from the i-th rule

2.4 Simulation Test Data

This study uses simulation data compiled based
on a range of physicochemical parameter values that
represent the general conditions of mangrove
waters.

This simulation data was used because the
research focused on conceptual modeling and testing
of the Sugeno Fuzzy Inference System, rather than
direct field measurements. The range of values used
represents realistic conditions in mangrove waters.

Four main parameters were used as system
inputs: temperature (°C), dissolved oxygen (DO) in
mg/L, salinity (ppt), and turbidity (NTU). This data
was then used to test the model's response to various
waterway conditions.

TABLE 6. Simulation Test Data

No Temperature DO Salinity Turbidity
(WO (mg/L)  (ppt) (NTU)

1 28 5 15 20

2 24 7 4 8

3 32 4 20 120

4 20 2 2 3

5 26 3 31 90

Each parameter combination is processed to
generate  variations in underwater channel
conditions, which are used as input to the fuzzy
system. The system outputs a predicted Signal-to-
Noise Ratio (SNR) value, which is then used as the
basis for modulation technique recommendations.

III.LRESULT AND DISCUSSION

This chapter presents the results of the
implementation and testing of the Sugeno Fuzzy
system in modeling the influence of aquatic
environmental parameters on the quality of
underwater communication channels. Through
simulations, the system is tested to assess the
accuracy of the fuzzy rules and its adaptability in
determining the appropriate modulation technique
based on the SNR value. The discussion covers three
main parts: system modeling, fuzzy logic
implementation, and overall system performance
analysis.
3.1 System Modeling Analysis

The test was conducted through simulations
with input data in the form of water physicochemical
parameters, including temperature, salinity,
dissolved oxygen (DO), and turbidity. The data was
processed using the Sugeno Fuzzy Inference System
(FIS) method to produce output in the form of a
predicted Signal-to-Noise Ratio (SNR) value. The
SNR value was then classified into three categories:
Low, Medium, and High, as the basis for selecting
the appropriate modulation technique.

In the simulation test data (Table 5), the input
data used were: temperature 28 °C, DO 5 mg/L,
salinity 15 ppt, and turbidity 20 NTU. Based on the
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modeling in Tables 1-4, all four parameters are in
the Med category, indicating a channel condition
with a Med SNR. The results of processing using the
fuzzy system produced a predicted SNR value of
12.5 dB, so the system automatically recommended
the use of QPSK modulation. The system output
results are shown in Figure 7.

Temperature : 28.8 °C

DO (mg/L) : 5.8

Salinity : 15.9 ppt
Turbidity 1 208.0 NTU
Predicted SNR : 12.5 dB
SNR Level : Moderate

Recommended Modulation : QPSK

FIGURE 7. The results of the fuzzy system output
testing are in the form of SNR values and modulation
technique recommendations.

The simulation results show that the system is
able to adapt to the underwater communication
channel conditions. Under normal temperature
conditions (2630 °C), medium salinity (6—-30 PSU),
Med turbidity (11-100 NTU), and DO within the
optimal range (4—8 mg/L), the resulting SNR value
is in the Med category. This condition indicates that
the channel is still quite stable, but there is potential
noise that can increase the bit error rate (BER) if
High order modulation is used. Therefore, the
selection of QPSK modulation in this scenario is
considered appropriate because it is able to maintain
a balance between throughput and resistance to
noise.

Furthermore, these results confirm that the
Sugeno fuzzy system can adaptively adjust
modulation techniques based on varying aquatic
environmental conditions. This approach makes
underwater communications more efficient and
reliable, especially under changing channel
conditions.

3.2 Implementation of Sugeno Fuzzy Logic

The implementation of the Sugeno Fuzzy Logic
method was carried out to test whether the inference
rules (rule base) developed accurately represented
the relationship between water physicochemical
parameters and underwater communication channel
conditions. The inference process used four input
variables: temperature, dissolved oxygen (DO),
salinity, and turbidity, each of which was divided
into three fuzzy categories: Low, Med, and High.

The simulation test data used refers to Table 5,
with several scenarios representing different water
conditions. Each input combination is processed
through the Sugeno FIS system to produce a Signal-
to-Noise Ratio (SNR) value in the Low, Medium, or
High categories. Based on the SNR category, the
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system automatically determines the most
appropriate modulation technique: BPSK, QPSK, or
16QAM.

The results of the fuzzy implementation are
shown in Table 7, which shows the relationship
between the simulation input data and the system
output based on the active fuzzy rules.

The table shows that the system's inference
results align with the logical relationships built into
the fuzzy rule base. Under Med parameter
conditions (scenario 1), the system produces Med
SNR and selects QPSK as the optimal modulation.
Meanwhile, under extreme conditions such as high
temperature and turbidity (scenario 3), the system
downgrades to BPSK to maintain communication
reliability.

In case 1, with a temperature of 28 °C, DO 5
mg/L, salinity 15 ppt, and turbidity 20 NTU, the
system produces a Med SNR so it is recommended
to use QPSK modulation. This result is in
accordance with the 41st fuzzy rule with Med
output. These parameter conditions describe a
relatively stable channel, with a moderate noise
level, so the fuzzy method is proven to be able to
provide output that matches the actual channel
conditions.

TABLE 7. System Test Results

. Rule
Tem DO Salini T.u rbi SNR. Fuzzy/  Modulatio
perat dity Predi
(mg/ ty . SNR n
ure (NT ction
(oc) L) (ppt) U) (dB) Catego Recomme
ration ndations
Rule 41
28 5 15 20 12,5 / Med QPSK
Rule 12
24 7 4 8 18,2 / High 16QAM
32 4 20 120 7.8 Rule 67 ppgy
/ Low
20 2 2 3 so  RuleS ppgy
/ Low
26 3 31 90 95  RuleS2 ppgy
/ Low

In case 2, the temperature values of 24 °C, DO
7 mg/L, salinity 4 ppt, and turbidity 8 NTU produce
High SNR with a recommended 16QAM
modulation. This result arises from the 12th fuzzy
rule with a High output, which describes ideal
channel conditions: cool temperature, High oxygen,
Low salinity, and clear water. This confirms that the
system is able to recognize channel conditions with
optimal signal quality and responds by selecting a
High-order modulation that is efficient with
bandwidth.

In case 3, with a temperature of 32 °C, DO 4
mg/L, salinity 20 ppt, and turbidity 120 NTU, a Low
SNR was obtained with BPSK modulation
recommendations, in accordance with the 67th fuzzy
rule. This condition indicates channel degradation
due to High temperatures and extreme turbidity,
which increases signal attenuation and decreases the

signal to noise ratio. The selection of BPSK is
appropriate because it has better resilience to
channel interference.

In case 4, a temperature of 20 °C, DO of 2 mg/L,
salinity of 2 ppt, and turbidity of 3 NTU resulted in
a Low SNR with the 5th active rule. The low DO
value indicates a lack of stability in the aquatic
environment, which results in a decrease in signal
propagation quality. The system successfully
classifies this condition into the poor channel
category, so BPSK modulation is again the most
appropriate choice.

In case 5, with a temperature of 26 °C, DO 3
mg/L, salinity 31 ppt, and turbidity 90 NTU, the
system produces a Low SNR output with the 52nd
fuzzy rule. High salinity increases water
conductivity and causes greater signal attenuation,
while DO and turbidity worsen the channel
condition. These results indicate that the fuzzy
system is able to identify the dominant factors that
affect transmission performance.

Overall, the test results show that the designed
fuzzy rule base works well and is consistent with the
physicochemical conditions of the waters. The
Sugeno FIS system successfully classifies channel
conditions accurately and provides adaptive
modulation recommendations that are in accordance
with the resulting SNR level. This proves that the
model with the Sugeno fuzzy approach is able to
represent the nonlinear relationship between
environmental parameters and the quality of
underwater communication channels with a good
level of accuracy, and can be used as a basis for
automatic  modulation control in  acoustic
communication systems in dynamic environments
such as mangrove ecosystems.

3.3 System Performance Analysis

Test results show that the Sugeno Fuzzy-based
system has adaptive capabilities in determining
modulation techniques appropriate to underwater
communication  channel conditions. This
mechanism functions to suppress the Bit Error Rate
(BER) and maintain data transmission efficiency by
selecting modulation based on the Signal-to-Noise
Ratio (SNR) value resulting from the water's
physicochemical parameters.

In High SNR conditions (> 15 dB), the system
recommends the use of High-order modulation
(16QAM) to maximize data rates. When the SNR is
in the Med category (11-15 dB), the system chooses
QPSK modulation because it offers a balance
between efficiency and resilience to noise.
Meanwhile, in Low SNR (< 10 dB), the system
switches to BPSK modulation which is more robust
against interference. = With this adaptation
mechanism, underwater acoustic communication
becomes more reliable and efficient, especially in
mangrove ecosystems that have High environmental
dynamics and unpredictable channel characteristics.
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The test results in Table 7 show that the Fuzzy
Sugeno system is able to accommodate various
water environmental conditions consistently. In the
first scenario, the SNR value is in the Med category
so the system recommends QPSK modulation. In the
second scenario, optimal environmental conditions
produce a High SNR, allowing the use of 16QAM to
increase throughput. Conversely, in the third
scenario, High temperatures and high turbidity
levels reduce the SNR to the Low category, and the
system automatically selects BPSK as the most
noise-resistant modulation technique.

The comparison of Bit Error Rate (BER) and
Signal-to-Noise Ratio (SNR) performance for
conventional models with the adaptive model
created is shown in Figure 8. The black curve depicts
the theoretical performance in the conventional
BPSK model, red for QPSK, and the blue curve for
16QAM. The simulation results show that the higher
the modulation order, the greater the SNR
requirement to achieve a low BER. The five test
points on the graph show that the Fuzzy Sugeno
system is able to follow the dynamics of water
channel variations well.

FIGURE 8. SNR vs BER Test results compared
with theory

For example, at the first point, the system
recommends using QPSK when the SNR is in the
Med category. As channel conditions improve and
the SNR increases, the system switches to 16QAM
to improve transmission efficiency. Conversely,
when the channel degrades due to increased
temperature or turbidity, the system downgrades the
modulation rate to BPSK to maintain
communication reliability.

The modulation change pattern indicates that
the system is capable of adaptively adjusting
modulation techniques to changing aquatic
environmental conditions. Thus, the Fuzzy Sugeno
approach has proven effective in accommodating the
uncertainty and dynamics of underwater acoustic
channels, as well as improving communication
performance through the selection of appropriate
modulation schemes in real-time. For further
research, this system needs to be tested
experimentally in the field with integration on real
underwater communication devices to validate the

68

effectiveness of modulation adaptation in more
complex and dynamic environmental conditions.

3.4 Results and Discussion

The results obtained in this study are consistent
with several previous works on adaptive modulation
and environment-aware underwater acoustic
communication. Stojanovic and Preisig [1]
emphasized that underwater channel quality is
strongly influenced by environmental parameters
and exhibits highly nonlinear behavior, which
supports the use of intelligent modeling approaches
such as fuzzy logic.

Kumar et al. [2], Akyildiz et al. [10], and
Wulandari et al [5] highlighted that conventional
fixed-modulation schemes are inefficient in
dynamic underwater environments, particularly in
shallow and coastal waters. The proposed Sugeno
Fuzzy-based adaptive modulation model addresses
this limitation by dynamically adjusting the
modulation scheme based on environmental
conditions.

Compared to machine learning-based adaptive
modulation approaches such as reinforcement
learning or neural networks [13], [15], the proposed
Sugeno FIS offers lower computational complexity,
better interpretability, and faster decision-making,
making it more suitable for real-time underwater
acoustic systems with limited processing capability.

In contrast to previous modulation based studies
that rely solely on SNR estimation [5], [6], [15],
[20], this research incorporates physicochemical
water parameters (temperature, salinity, DO, and
turbidity) as direct inputs, enabling earlier channel
quality prediction before severe degradation occurs.
This contribution is particularly relevant for highly
dynamic environments such as mangrove waters.

IV.CONCLUSION

This study successfully demonstrates that the
Sugeno Fuzzy Inference System can effectively
model  the  relationship  between  water
physicochemical parameters: temperature, salinity,
dissolved oxygen, and turbidity, and underwater
acoustic channel quality. The proposed model
accurately predicts SNR levels and enables adaptive
modulation selection between BPSK, QPSK, and
16QAM according to channel conditions.
Simulation results confirm that the adaptive scheme
reduces BER and improves communication
reliability in  dynamic = mangrove  water
environments. Therefore, the Sugeno fuzzy-based
approach is suitable as a lightweight and
interpretable solution for real-time adaptive
underwater acoustic communication systems.
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