Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 12 No. 2 Tahun 2025 ISSN: 2580-2291

Received November 15th 2025; accepted December 24th 2025. Date of publication December 31st 2025
Digital Object Identifier: https://doi.org/10/25047/jtit.v12i2.458

CNN Implementation in Progressive Web App
for Automatic Garbage Classification using
TensorFlow.js

EKA SETYABUDI', NOORA QOTRUN NADA? MEGA NOVITA?

"Universitas PGRI Semarang, Semarang, Indonesia
2Universitas PGRI Semarang, Semarang, Indonesia
SUniversitas PGRI Semarang, Semarang, Indonesia

CORESPONDING AUTHOR: EKA SETYABUDI (email:22670144@upgris.ac.id)

ABSTRACT The substantial and continuously increasing volume of global solid waste has evolved into
a critical environmental challenge. This issue is further exacerbated by the inherent inefficiency of
conventional manual sorting techniques, which are not only costly but also pose significant health risks to
workers due to exposure to hazardous materials. To address the limitations of existing server-dependent
systems, this research develops and evaluates an automated, client-side waste classification system. We
employ a Convolutional Neural Network (CNN) based on the VGG16 architecture, integrated into a
Progressive Web App (PWA) to ensure broad accessibility across devices without requiring native
installation. The methodology involves retraining the VGG16 model using transfer learning on a validated
public dataset of 10,365 images, categorized into organic and inorganic waste. Preprocessing steps
included resizing images to 224x224 pixels, pixel normalization, and data augmentation to enhance model
robustness against real-world variations. Subsequently, the trained model was converted into the web-
compatible TensorFlow.js format and deployed within a PWA framework that utilizes Service Workers
and IndexedDB caching mechanisms to enable offline functionality. Results indicate that despite the
computational challenges posed by the model's large size, the system successfully performed efficient
client-side inference by prioritizing WebGL backend for GPU acceleration. The model achieved an overall
accuracy of 94% on the test dataset, with a precision of 95% for inorganic waste. These findings confirm
that deploying high-accuracy CNN models at the edge using PWA and TensorFlow.js is a feasible and
promising strategy for practical, technology-based waste management and environmental education.

KEYWORDS: Waste Classification; Convolutional Neural Network; VGG16; Progressive Web
App; TensorFlow js.

LINTRODUCTION

The simultaneous impact of population
growth and urbanization on a global scale has
increased the generation of solid waste [1], [2].
Ineffective waste management, particularly in
sorting and recycling, poses a global
environmental and social challenge [1], [3], [4].
This contributes to increased greenhouse gas
emissions, environmental pollution, and the
depletion of natural resources [5].

The manual process of waste sorting and
collection has many shortcomings [4], [6], [7]. In
addition to high costs, this method poses health
problems for workers due to exposure to
pathogens and toxic substances [1], [5]. This
problem is exacerbated by low public awareness
of separating household waste [8], which
contaminates recyclable materials and increases
the volume of waste sent to landfills.

In this context, there is a need for more
sophisticated and efficient automated systems

with a broader user interface [2], [3]. To achieve
this, the system must be intelligent, easy to
operate, lightweight, and able to run on a variety
of devices. This solution can be accessed using a
browser-based cross-platform PWA without
requiring additional app installation.
Furthermore, offline features and home screen
deployment provide a native app-like experience.
Deep learning techniques, particularly
Convolutional Neural Networks (CNNs), have
made significant contributions to image
classification [20], including trash classification
[81, [9], [10], [11], [12], [13]. Implemented CNN
architectures such as ResNet, Inception,
MobileNet, VGG, and TrashNet have achieved
excellent accuracy [8], [9], [12], [14]. However,
most classification systems still rely on servers or
native applications... [lanjutkan sampai] ...In
general, the biggest challenge is how to combine
large models with the accuracy, efficiency, and
lightweight features of a PWA platform.

105

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Eka Setyabudi: CNN Implementation in Progressive Web App for Automatic Garbage
Classification using TensorFlow.js

Recent advances in automatic waste
classification have demonstrated promising
results using various CNN architectures. For
instance, Nahiduzzaman et al. [3] developed a
server-based system achieving high accuracy but
requiring continuous internet connectivity.
Similarly, White et al. [6] proposed WasteNet for
edge deployment using IoT hardware, while
Yong et al. [8] utilized MobileNetV2 prioritizing
lightweight deployment on mobile devices at the
expense of accuracy in complex environments.
However, these approaches either depend on
specialized hardware [6], [19] or sacrifice
classification performance for efficiency [8].
Furthermore, existing browser-based solutions
remain limited due to model size constraints and
lack of robust offline capabilities [16].

The gap addressed by this research lies in
the absence of a truly accessible, client-side waste
classification system that maintains high accuracy
without requiring native app installation or
continuous server connectivity. While previous
studies have achieved strong performance
through server-side processing [3] or dedicated
edge devices [6], there is limited research on
deploying large, high-accuracy CNN models
directly in Progressive Web Apps with full offline
functionality.

The novelty of this work is threefold: (1) it
successfully integrates the computationally
intensive VGG16 architecture into a PWA
environment using TensorFlow.js with GPU
acceleration, (2) it implements comprehensive
offline capabilities through Service Worker
caching and IndexedDB, enabling waste
classification without internet dependency, and
(3) it provides a replicable framework for
deploying large deep learning models at the edge
through web browsers, making the technology
accessible across devices without installation
barriers. This approach specifically addresses the
limitation noted by Nahiduzzaman et al. [3]
regarding server dependency and extends beyond
the lightweight-focused approaches [8] by
demonstrating that high-accuracy models can be
practically deployed client-side with appropriate
optimization strategies.

The selection of VGG16 over lighter
alternatives like MobileNet is justified by its
superior feature extraction capabilities for diverse
waste images, as demonstrated in recent
comparative studies [11], [12]. Despite its
computational demands, VGGI16's deeper
architecture with 13 convolutional layers
provides robust pattern recognition essential for
handling 'real-world' waste images with varying
lighting conditions, angles, and backgrounds
[16]. The choice of PWA as the deployment
platform addresses the digital divide by
eliminating app store barriers and installation

106

friction, while enabling cross-platform
compatibility and offline functionality through
Service Workers [17], critical features for
reaching diverse user demographics in waste
management education and practice.

This research aims to bridge this gap by
integrating the VGG16 model into a PWA. This
approach emphasizes not only classification
accuracy but also model loading efficiency,
offline capabilities, and the overall user
experience. Thus, this solution is expected to be a
practical and inclusive alternative for technology-
based waste management.

II.METHOD
2.1. Data Collection and Preprocessing

This study used a public waste
classification dataset sourced from Kaggle
(https://www .kaggle.com/code/divaanggreinihar
ahap/klasifikasi-gambar/input). The dataset was
then uploaded to Google Drive for processing. Of
the total available dataset, this study used 10,365
preprocessed and validated images, divided into
two classes: 5,709 images of inorganic waste and
4,656 images of organic waste. This dataset
selection prioritized those with high image
diversity, including "real-world" conditions, to
increase model robustness [2], [4], [16].

It should be noted that many waste
classification datasets face the problem of class
imbalance [3], where some types of waste (e.g.,
plastic and paper) dominate while other
categories (e.g., hazardous materials) are
underrepresented. Without intervention, this
imbalance is likely to cause Al models to develop
algorithmic bias [3], underperforming minority
classes despite demonstrating high overall
accuracy. Therefore, the need for datasets that
support a more balanced class distribution, or the
careful application of data augmentation (such as
oversampling for minority classes) [5], [15],[19],
is crucial to ensure fairness and efficiency across
all bin categories. Using datasets with '"real-
world" images is also crucial to improve the
model's generalizability to real-world conditions
[16].

The data preprocessing steps include:

1. Dataset Preparation: FEach dataset is
automatically divided into training, validation,
and testing parts in an 80:10:10 ratio.

2. Image Scaling: All images are uniformly
resized to 224x224 pixels with 3 color channels
(RGB), in accordance with the standard input
specifications for the VGG16 architecture.

3. Pixel Normalization: Normalize pixel intensity
values that were previously within a normalized
range by dividing each value by 255.

4. Zero-Centering and Color Sequence
Conversion: Calculate the RGB average of the

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 12 No. 2 Tahun 2025 ISSN: 2580-2291

dataset and subtract pixels from that average
value (zero-centering). If the model expects a
BGR channel sequence, the image will be
converted from RGB to BGR.

5. Data Augmentation: Apply rotation,
width/height shift, zoom, and horizontal flip to
reduce overfitting and increase dataset variation.

Before inference, the input image from
the camera is converted into a tensor, resized to
224x224 pixels using bilinear interpolation, and
normalized to a range of [0, 1]. The
implementation uses tf.tidy to prevent memory
leaks during this process, as demonstrated in
Listing 1.

Listing 1. Client-Side Image Preprocessing

const preprocessimage = (imageElement) => {
return tf.tidy(() => {
/I Convert DOM element to Tensor
const img =
tf.browser.fromPixels(imageElement);

// Resize to VGG16 input standard (224x224)
const resized = tf.image.resizeBilinear(img,
[224, 224));

// Normalize pixel values (0-255 -> 0-1)
// and add batch dimension [1, 224, 224, 3]

const normalized =
resized.toFloat().div(255.0).expandDims(0);

return normalized;
1)
B

2.2. Model Architecture and Training

The VGGI16 Convolutional Neural
Network model was used as the feature extractor
[7], [11]. This architecture consists of 13
convolutional layers composed of 3x3 filters with
stride 1 and the same padding, and 3 fully
connected layers. Before the max pooling layer at
2x2 with stride 2, two convolutional layers are
passed through. Thus, valuable information is
preserved despite the reduction in spatial
dimensionality. The activation function used after
the convolutional and fully connected layers is
ReLU [8]. Softmax is used in the final layer and
outputs probabilities for each category in the bin
[7]. In other words, multi-class classification.

To leverage the knowledge gained from
training on large-scale datasets and accelerate the
training process, a VGG16 model pre-trained on
the ImageNet dataset was used as a baseline (pre-
trained model) [11], [12], [14]. In this case,
efficiency was also a goal. VGG16 has powerful
generic feature extraction, so it is preferable to
freeze it first. The model only needs to be adjusted
in the final fully connected layer to function on

bin classification. This way, the model can learn
relevant patterns in the dataset. This approach is
desirable because it can reduce training time and
required computational resources [6], [16].

The model training process was carried out with
the following configuration:

1. Optimizer: The Adam optimizer was used to
optimize the model [7], with an initial learning
rate set at 0.001.

2. Loss Function: Categorical cross-entropy is
used as the loss function [12], which is suitable
for multi-class classification tasks.

3. Callbacks: To monitor and control the training
process, callbacks such as ModelCheckpoint and
EarlyStopping are implemented.
ModelCheckpoint stores the best model weights
based on performance on the validation set (e.g.,
val loss), while EarlyStopping stops training if
validation performance does not improve after a
certain number of epochs, preventing overfitting.
4. Epochs and Batch Size: The number of epochs
and batch size were determined experimentally to
achieve optimal convergence and efficient
resource utilization.

2.3. Model Conversion to TensorFlow.js

The VGG16 model, which had been
trained and saved in HDF5 Keras (.h5) format,
was converted to a format compatible with
TensorFlow.js [17]. This was done using the
tensorflowjs_converter command-line tool. The
conversion resulted in a model.json file and
several binary shard files containing the model
weights. The VGG16 model is very large,
containing approximately 138 million
parameters[3], and its weight files are
approximately 100 MB. Even after conversion to
TensorFlow.js format, the separate binary files
are expected to remain large. This large file size
significantly impedes the initial download time of
the PWA and memory consumption in the user's
browser. This significantly impacts the user
experience with the PWA, which is expected to
be fast and highly responsive. Therefore, simply
converting the model is not sufficient; substantial
model optimization strategies[18] need to be
implemented before or after conversion to make
the VGG16 model practically suitable for PWA
deployment.

2.4. Progressive Web App (PWA) Development

Figure 1 illustrates the overall system
flowchart, demonstrating the sequential process
from user image capture through preprocessing,
model inference, and result display. Figure 2
provides a detailed view of the client-side
processing logic, emphasizing the conditional
flow for cache utilization and the fallback
mechanism for network retrieval when cached
models are unavailable. These diagrams highlight

107

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Eka Setyabudi: CNN Implementation in Progressive Web App for Automatic Garbage
Classification using TensorFlow.js

the system's ability to function independently of
server connectivity once the initial model is
cached.

To provide a complete overview of the
system flow, the application's overall architecture
and logical flow diagram is presented below:

Login /
Register

Success

Profil
Pengguna

Edit Profil

Simpan
Perubahan

-

1

caches.match(event.request)
.then((cachedResponse) => {
// Return cached file if available
if (cachedResponse) {
return cachedResponse;
§
/I Otherwise, fetch from network
return
fetch(event.request).then((networkResponse) =>
{
// Cache the new file for future use
return caches.open('vggl6-cache-
v1').then((cache) => {
cache.put(event.request,
networkResponse.clone());
return networkResponse;
1);
1)s
1)
);
1)s

[authRoutes] [userRoutes } [Firebase
Firestore

Figure 1. Flowchart of a PWA-Based Waste
Classification System

Scan Riwayat backend
Sampah Klasifikasi

! |

Ambil
Gambar / scanRoutes

Kamera

Edukas
Lingkungan

Ambil Artikel
dari News AP

% leaderboard
Tampilkan Peringkat
Daftar Artikel
Detail Artikel

historyR-
outes

TensorFlow-

js Model

Simpan ke
Database

newsAPI|

Urutkan
Poin Penggung

scanRoutes Tampilkan Firebase
Leaderboard Firestore

Figure 2. Flowchart of a PWA-Based Waste
Classification System

To ensure the application functions
offline and loads the large model efficiently, a
custom Service Worker strategy is implemented.
Listing 2 shows how the Service Worker
intercepts network requests and serves cached
assets, which is critical for the PWA performance

Listing 2. Service Worker Caching Strategy

// Service Worker (sw.js)
self.addEventListener('fetch’, (event) => {
// Intercept request
event.respondWith(

108

To ensure the system runs efficiently on
mobile devices with limited resources, the
application architecture is designed to prioritize
client-side processing. Figure 3 illustrates the
three-layer system architecture: the client-side
processing unit (React Ul and TensorFlow.js), the
service layer (Service Worker and IndexedDB for
offline capability), and the cloud backend
(Firebase for optional data synchronization). As
depicted, the VGG16 model executes entirely on
the user's device using the WebGL backend for
GPU acceleration, eliminating server dependency
during inference.

User Browser Srrsriphors
(React P!

T

—— o g
fad iz a v =
(Image Cazture) Zara-cartering ¢ Augment] (ptimizes: WebGLGAU)

/

 assfeation Output
{C7ganic | Inorganic
Tispzy on A U

Firabasa (Optional)
& Save Lags f Recap Dete
Offine Support & Undates InesredD3 Cace

Figure 3. System Block Diagram of the Proposed
PWA Waste Classification.

As shown in Figure 3, the system
consists of three main layers: the client-side
processing unit (React UI and TensorFlow.js), the
service layer (Service Worker and IndexedDB for
offline capability), and the cloud backend
(Firebase). The VGG16 model is executed
directly on the user's device using the WebGL

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 12 No. 2 Tahun 2025 ISSN: 2580-2291

backend for GPU acceleration. To ensure optimal
performance on mobile devices, the system
explicitly configures TensorFlow.js to use the
WebGL backend with specific memory
optimizations, as shown in Listing 3.

Listing 3. WebGL Backend Configuration for
GPU Acceleration

// Initialize backend for better performance
async function initBackend() {
try {
if (tf.getBackend() !=="webgl") {
await tf.setBackend('webgl');
await tf.ready();

// Enable floatl6 textures for
memory efficiency

if
(tf.ENV.getBool("'WEBGL_VERSION') ===2) {

tf.env().set(WEBGL_FORCE_F16 TEXTURE
S', true);

tf.env().set(WEBGL_DELETE_TEXTURE_TH
RESHOLD', 0);
}

}

} catch (err) {
console.warn('Fallback to CPU:', err);
await tf.setBackend('cpu’);

}
H

The application was developed as a
Progressive Web App (PWA) using React for the
frontend, Hapi as the backend API, and Firebase
for data storage. The manifest.json file is used to
define the application name, icon, start URL,
standalone view mode, and theme and
background colors. A service worker is registered
to support asset caching, enable offline access,
and speed up loading. The VGG16 waste
classification model in TensorFlow.js format is
loaded directly on the frontend asynchronously,
with priority fetching from the IndexedDB cache
for optimal performance. Images captured by the
camera or uploaded by the user are processed
directly on the client side (resize to 224x224,
normalize, and adjust colors) before inference is
performed by the model. This process runs on the
main thread or a web worker to maintain a
responsive Ul, and the classification results are
displayed in real time.

II.RESULT AND DISCUSSION

3.1. Presentation of Results

To measure the performance of the
classification model, standard evaluation metrics
were calculated based on the confusion matrix
values. The formulas used are as follows:

TP + TN
TP + TN + FP + FN
TP

X 100%

Accuracy = X 100%

Precision = m
= — X 0,
Recall TP + FN 100%

Precision X Recall
F1 —Score = 2 X

Precision + Recall

Where TP represent True Positives, TN is
True Negatives, FP is False Positives, and FN is
False Negatives.

The retrained VGG16 model achieved an
overall accuracy of 0.94 on the test set. Evaluation
of each category using precision, recall, and F1-
score metrics yielded the following results:

Table 1: Comparison of VGG16 Model Waste
Classification Performance

Waste Precision ~ Recall F1-
Category (%) (%) Score
(%)
Inorganic 95 96 95
Organic 94 93 94
Total
Accuracy 94

Trus Labsl

Confusion Matrix

1000

ana

ouo

§ 5

& i
& <
e

Fredicred Label

Figure 4: Confusion Matrix

Figure 4 presents a confusion matrix
detailing the performance of the VGG16 model
on 2,001 test datasets. This matrix shows that the
model successfully identified 1,090 images as
'Inorganic' (True Positives) correctly and 800

109

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Eka Setyabudi: CNN Implementation in Progressive Web App for Automatic Garbage
Classification using TensorFlow.js

images as 'Organic' (True Positives). There were
two main types of errors: 63 'Organic' images
were misclassified as 'Inorganic' (False
Positives), and 48 'Inorganic' images were
misclassified as 'Organic' (False Negatives). This
relatively small number of prediction errors (a
total of 111 out of 2001) confirms the model's
high accuracy of 94%. This data also aligns with
Table 1, which shows a slightly higher recall for
the Inorganic class (96%) than for the Organic
class (93%), indicating the model is slightly more
reliable in recognizing inorganic waste.

Hade| Accurary bindel Loss

1000 — Fruin Zzvaracy ————— — Theinoes
e walifarion AUy \

1 :] [0 : 4 8 5

Fpaciy Fpoen

Figure 5: Accuracy Graph

Figure 5 displays a graph of the model's
training history, plotting the accuracy (left) and
loss (right) metrics for the training data (blue line)
and validation data (orange line) over 15 epochs.
The accuracy graph shows that both training
accuracy (accuracy) and validation accuracy
(val accuracy) have steadily increased.
Concurrently, the loss graph shows a consistent
decline for both data sets (loss and val loss).
Importantly, there is no significant gap or
divergence between the training and validation
curves. This demonstrates that the model does not
suffer from severe overfitting and has good
generalization ability when applied to new data.

In PWA Inference Performance, the 100
MB VGG16 model in TensorFlow.js format
affects the initial download and loading time of
the model. For a resolution of 224x224 pixels, the
inference time is approximately 109.79 ms, but
for a resolution of 512x512, it jumps to 18
seconds.

Example Application Interface

110

Hasil Pemindaian

Dampik Lingk

Figure 6: PWA Interface for Automatic Waste
Classification

Figure 6 showcases the responsive PWA
interface during real-time waste classification.
The clean, intuitive design enables users to
capture or upload waste images and receive
instant classification results with confidence
scores. The interface's simplicity ensures
accessibility for diverse user demographics, from
students to waste management practitioners,
supporting the system's educational and practical
objectives.

3.2. Discussion

VGG16 Model Performance in Waste
Classification: VGG16 demonstrates adequate
classification performance with a total accuracy
of 94%. This model performs quite well in
classifying organic and inorganic Wwaste
categories. This indicates that the VGGI16
convolutional architecture has captured
distinctive visual features such as texture and
dominant color. The performance degradation in
garbage classification is likely due to the uneven
number of samples in the training dataset and the
similarity between categories. Deep learning
models are powerful, but they still require the
quality and diversity of the dataset [4].

Table 2. Comparison with Previous Waste
Classification Systems

Acc.
Study Model (%) Deployment Internet Inst. Device

This
Work VGG16 94.0 PWA No No Any

[3] Ens. 97.2 Server Yes Yes Mob.
[6] WNet 91.8 IoT/Edge No HW Ded.
[8] MNetV2 89.3 Mob. App No Yes Mob.
[71 VGG16 95.1 Server Yes Yes Mob.

[16] Custom 88.5 Edge No HW Ded.

Notes: Acc.=Accuracy; Inst.=Installation;
Ens.=Ensemble CNN; WNet=WasteNet;

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 12 No. 2 Tahun 2025 ISSN: 2580-2291

MNetV2=MobileNetV2; HW=Hardware Setup;
Mob.=Mobile; Ded.=Dedicated Device.

As shown in Table 2, the proposed system
achieves competitive accuracy (94%) while
uniquely combining client-side processing with
Zero installation requirements. While
Nahiduzzaman et al. [3] achieved higher accuracy
(97.2%), their server-dependent architecture
introduces latency and privacy concerns from
continuous data transmission. In contrast, our
client-side approach processes images locally,
eliminating these issues at the cost of a modest
3.2% accuracy reduction. Compared to
MobileNetV2-based solutions [8], which
prioritize model lightness over accuracy, our
VGG16 implementation demonstrates that larger,
more accurate models can be practically deployed
in browsers through strategic optimizations (GPU
acceleration, caching). The 4.7% accuracy
improvement over MobileNetV2 justifies the
additional computational requirements,
particularly for educational and high-stakes
sorting applications where classification
reliability is paramount. Unlike IoT-based edge
systems [6], [19] that require specialized
hardware setup, the PWA approach leverages
ubiquitous smartphone browsers, dramatically
lowering the barrier to entry for waste
management education and community
engagement. This approach also offers a more
accessible alternative to dedicated IoT hardware
solutions, such as the LoRa-GPS smart bins [18].
This accessibility advantage outweighs the 2.2%
accuracy difference with hardware-optimized
WasteNet [6], especially in resource-constrained
settings where purchasing dedicated devices is
impractical. The key contribution of this work lies
in demonstrating that high-accuracy CNN models
(138M parameters) can be effectively deployed at
the edge through web technologies, achieving
94% accuracy with full offline capability---a
combination not demonstrated in prior browser-
based solutions [16]. This validates PWA +
TensorFlow.js as a viable platform for deploying
computationally intensive Al models in socially
impactful applications.

The implementation of a waste
classification system has the potential to automate
the manual process of waste sorting [3], [7]. This
may raise concerns about job losses. However, it
creates new opportunities in the form of
digitalization in the waste management sector,
such as retraining workers to become educators or
operators in the waste sorting process. The
integration of Al into public applications must
address fairness and transparency. For example,
if a model is more accurate with certain types of
waste, this could lead to classification bias [3].
Furthermore, classification results, along with

user data, must be handled within strict privacy
policy constraints. While the goal of this
application is to manage waste more effectively,
there are still drawbacks in terms of energy
impact due to indirect energy use from training
and inference. Implementing a lightweight and
efficient model is a crucial first step towards
environmental sustainability in the digital realm
[8], [15].

This system is accessible from various
devices and network conditions because it adopts
the PWA (Progressive Web App) principle. Even
without an internet connection, users can still
utilize the classification feature. Push
notifications and homescreen placement increase
long-term user engagement. The app's
widespread use of low- to mid-range devices and
responsiveness contribute to the reduction of the
digital divide. These features align with the
mission of educating and engaging the public
about responsible waste management, while
simultaneously making this technology an
inclusive and sustainable solution.

IV.CONCLUSION

This research successfully developed an
accessible automatic waste classification system
by integrating the VGG16 CNN model into a
Progressive Web Application, demonstrating that
high-accuracy deep learning models can be
effectively deployed client-side for offline waste
classification. The system achieved 94%
accuracy on a validated dataset of 10,365 images
through strategic implementation of
TensorFlow.js with GPU acceleration (WebGL
backend) and robust caching mechanisms
(Service Worker and IndexedDB), confirming
that PWA technology can support
computationally intensive Al applications
without sacrificing accessibility or offline
functionality. The main contribution of this work
is providing a replicable framework for deploying
large-scale CNN models (138M parameters) at
the edge through web browsers, eliminating
installation barriers and server dependencies that
limit existing solutions. This approach directly
addresses the research gap in client-side waste
classification by demonstrating that accuracy
need not be sacrificed for accessibility—our
VGG16 implementation outperformed
lightweight alternatives while maintaining
universal browser compatibility. The primary
limitation remains the 100 MB model size
causing initial load latency on slow networks.
Future work should explore: (1) advanced
compression techniques (quantization, pruning,
knowledge distillation) to reduce model size
without significant accuracy loss, (2) lighter
architectures like EfficientNet for comparative
evaluation, and (3) dataset expansion to include

111

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Eka Setyabudi: CNN Implementation in Progressive Web App for Automatic Garbage

Classification using TensorFlow.js

hazardous waste and underrepresented recyclable
categories, enhancing system robustness and
reducing classification bias. These improvements

will

further strengthen PWA-based Al

deployment as a sustainable, inclusive solution

for

environmental education and waste

management practice.

REFERENCE

(11

(2]

(3]

(4]

(5]

(6]

(8]

(9]

[10]

(1]

[12]

B. Fang et al., “Artificial intelligence for waste
management in smart cities: a review,” Aug. 01,
2023, Springer Science and Business Media
Deutschland GmbH. doi: 10.1007/s10311-023-
01604-3.

D. Ziouzios, N. Baras, V. Balafas, M. Dasygenis,
and A. Stimoniaris, “Intelligent and Real-Time
Detection and Classification Algorithm for
Recycled Materials Using Convolutional Neural
Networks,” Recycling, vol. 7, no. 1, Feb. 2022, doi:
10.3390/recycling7010009.

M. Nahiduzzaman et al., “An automated waste
classification system wusing deep learning
techniques: Toward efficient waste recycling and
environmental sustainability,” Knowl Based Syst,
vol. 310, Feb. 2025, doi:
10.1016/j.knosys.2025.113028.

F. R. Sayem et al., “Enhancing waste sorting and
recycling efficiency: robust deep learning-based
approach for classification and detection,” Neural
Comput Appl, Feb. 2024, doi: 10.1007/s00521-024-
10855-2.

A. Arishi, “Real-Time Household Waste Detection
and Classification for Sustainable Recycling: A
Deep Learning Approach,” Sustainability
(Switzerland), vol. 17, no. 5, Mar. 2025, doi:
10.3390/su17051902.

G. White, C. Cabrera, A. Palade, F. Li, and S.
Clarke, “WasteNet: Waste Classification at the
Edge for Smart Bins,” Jun. 2020, [Online].
Available: http://arxiv.org/abs/2006.05873

M. L. B. Ahmed et al., “Deep Learning Approach to
Recyclable Products Classification: Towards
Sustainable Waste Management,” Sustainability
(Switzerland), vol. 15, no. 14, Jul. 2023, doi:
10.3390/sul51411138.

L. Yong, L. Ma, D. Sun, and L. Du, “Application of
MobileNetV2 to waste classification,” PLoS One,
vol. 18, no. 3 March, Mar. 2023, doi:
10.1371/journal.pone.0282336.

H. Zheng and Y. Gu, “Encnn-upmws: Waste
classification by a CNN ensemble using the UPM
weighting strategy,” Electronics (Switzerland), vol.
10, no. 4, pp. 1-21, Feb. 2021, doi:
10.3390/electronics10040427.

L. Stephen Pieters, “DEVELOPMENT OF
AUTOMATIC WASTE CLASSIFICATION
SYSTEM USING CNN BASED DEEP
LEARNING TO SUPPORT SMART WASTE
MANAGEMENT PENGEMBANGAN SISTEM
KLASIFIKASI SAMPAH OTOMATIS
MENGGUNAKAN DEEP LEARNING
BERBASIS CNN UNTUK MENDUKUNG
SMART WASTE MANAGEMENT,” vol. 10, no.
1, p. 2025.

A. Gaurav et al., “Smart waste classification in IoT-
enabled smart cities using VGG16 and Cat Swarm
Optimized random forest,” PLoS One, vol. 20, no. 2
February, Feb. 2025, doi:
10.1371/journal.pone.0316930.

J. D. Ortiz-Mata, X. J. Oleas-Vélez, N. A. Valencia-
Castillo, M. del R. Villamar-Aveiga, and D. E.
Dager-Lopez, “Comparison of Vertex Al and

112

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Convolutional Neural Networks for Automatic
Waste Sorting,” Sustainability (Switzerland), vol.
17, no. 4, Feb. 2025, doi: 10.3390/sul17041481.

C. Shi, C. Tan, T. Wang, and L. Wang, “A waste
classification method based on a multilayer hybrid
convolution neural network,” Applied Sciences
(Switzerland), vol. 11, no. 18, Sep. 2021, doi:
10.3390/app11188572.

Z. Md, A. Amin, N. Sami, and R. Hassan, “An
Approach of Classifying Waste Using Transfer
Learning Method,” 2021.

W. Qiu, C. Xie, and J. Huang, “An improved
EfficientNetV2 for garbage classification,” Mar.
2025, [Online]. Available:
http://arxiv.org/abs/2503.21208

X. Li and R. Grammenos, “A Smart Recycling Bin
Using Waste Image Classification At The Edge,”
Oct. 2022, [Online]. Available:
http://arxiv.org/abs/2210.00448

D. Smilkov et al., “TENSORFLOW.JS: MACHINE
LEARNING FOR THE WEB AND BEYOND,”
2019.

N. C. A. Sallang, M. T. Islam, M. S. Islam, and H.
Arshad, “A CNN-Based Smart Waste Management
System Using TensorFlow Lite and LoRa-GPS
Shield in Internet of Things Environment,” [EEE
Access, vol. 9, pp. 153560-153574, 2021, doi:
10.1109/ACCESS.2021.3128314.

1. Fanani and R. Rianto, "Improving Online Exam
Verification with Class-Weighted and Augmented
CNN Models," Jurnal Teknologi Informasi dan
Terapan (J-TIT), vol. 11, no. 2, pp. 91-98, 2024.

F. Ramadhani et al., "Klasifikasi Suara Paru Normal
Dan Abnormal Berbasis Algoritma CNN
(Convolutional Neural Network)," Jurnal Teknologi
Informasi dan Terapan (J-TIT), vol. 11, no. 1, pp.
15-20, 2024.

EKA SETYABUDI is currently an
undergraduate student in the
Informatics Department at the
Universitas PGRI Semarang,
Semarang, Indonesia. He is in
the seventh semester of the
bachelor program. His research
interests primarily include

machine learning, data mining, and the application
of artificial intelligence in various fields. He can be
contacted at email: 22670144(@upgris.ac.id

NOORA QOTRUN NADA is a
Lecturer in the Informatics
Study Program and currently
serves as the Secretary of the
Program Study at the
Universitas PGRI Semarang,
Semarang, Indonesia. She
obtained her Bachelor of
Engineering (S.T.) and Master

of Engineering (M.Eng.) degrees. Her primary
research interests include software engineering,
information systems, and the application of
technology in education. She can be contacted at
email: noora@upgris.ac.id

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:22670144@upgris.ac.id
mailto:noora@upgris.ac.id

Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 12 No. 2 Tahun 2025 ISSN: 2580-2291

MEGA NOVITA is an Associate
Professor in the Informatics
Study Program at the
Universitas PGRI Semarang,
Semarang, Indonesia. She
obtained the S.Si. degree in
mathematics from Satya
Wacana Christian University
(UKSW) in 2009, and the M.Si.
degree in biology from UKSW in 2011. She later
received the M.Nat.Sc. degree in chemistry from
Kwansei Gakuin University (KGU), Japan, in
2012, and earned the Doctor of Science (Dr.Sc.)
degree from the same university in 2015. Her
interdisciplinary research background focuses on
computational science, theoretical investigation of
electronic structures, and data analysis, particularly
their application in materials science and
computational modeling. She also conducted
postdoctoral research at Chonbuk National
University (CBNU), South Korea. She can be
contacted at email: mega@upgris.ac.id

113

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:mega@upgris.ac.id

Eka Setyabudi: CNN Implementation in Progressive Web App for Automatic Garbage
Classification using TensorFlow.js

114

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

