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ABSTRACT The substantial and continuously increasing volume of global solid waste has evolved into 

a critical environmental challenge. This issue is further exacerbated by the inherent inefficiency of 

conventional manual sorting techniques, which are not only costly but also pose significant health risks to 

workers due to exposure to hazardous materials. To address the limitations of existing server-dependent 

systems, this research develops and evaluates an automated, client-side waste classification system. We 

employ a Convolutional Neural Network (CNN) based on the VGG16 architecture, integrated into a 

Progressive Web App (PWA) to ensure broad accessibility across devices without requiring native 

installation. The methodology involves retraining the VGG16 model using transfer learning on a validated 

public dataset of 10,365 images, categorized into organic and inorganic waste. Preprocessing steps 

included resizing images to 224x224 pixels, pixel normalization, and data augmentation to enhance model 

robustness against real-world variations. Subsequently, the trained model was converted into the web-

compatible TensorFlow.js format and deployed within a PWA framework that utilizes Service Workers 

and IndexedDB caching mechanisms to enable offline functionality. Results indicate that despite the 

computational challenges posed by the model's large size, the system successfully performed efficient 

client-side inference by prioritizing WebGL backend for GPU acceleration. The model achieved an overall 

accuracy of 94% on the test dataset, with a precision of 95% for inorganic waste. These findings confirm 

that deploying high-accuracy CNN models at the edge using PWA and TensorFlow.js is a feasible and 

promising strategy for practical, technology-based waste management and environmental education. 

KEYWORDS: Waste Classification; Convolutional Neural Network; VGG16; Progressive Web 

App; TensorFlow.js. 

 

I.INTRODUCTION  

The simultaneous impact of population 

growth and urbanization on a global scale has 

increased the generation of solid waste [1], [2]. 

Ineffective waste management, particularly in 

sorting and recycling, poses a global 

environmental and social challenge [1], [3], [4]. 

This contributes to increased greenhouse gas 

emissions, environmental pollution, and the 

depletion of natural resources [5]. 

The manual process of waste sorting and 

collection has many shortcomings [4], [6], [7]. In 

addition to high costs, this method poses health 

problems for workers due to exposure to 

pathogens and toxic substances [1], [5]. This 

problem is exacerbated by low public awareness 

of separating household waste [8], which 

contaminates recyclable materials and increases 

the volume of waste sent to landfills. 

In this context, there is a need for more 

sophisticated and efficient automated systems 

with a broader user interface [2], [3]. To achieve 

this, the system must be intelligent, easy to 

operate, lightweight, and able to run on a variety 

of devices. This solution can be accessed using a 

browser-based cross-platform PWA without 

requiring additional app installation. 

Furthermore, offline features and home screen 

deployment provide a native app-like experience. 

Deep learning techniques, particularly 

Convolutional Neural Networks (CNNs), have 

made significant contributions to image 

classification [20], including trash classification 

[8], [9], [10], [11], [12], [13]. Implemented CNN 

architectures such as ResNet, Inception, 

MobileNet, VGG, and TrashNet have achieved 

excellent accuracy [8], [9], [12], [14]. However, 

most classification systems still rely on servers or 

native applications... [lanjutkan sampai] ...In 

general, the biggest challenge is how to combine 

large models with the accuracy, efficiency, and 

lightweight features of a PWA platform. 
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Recent advances in automatic waste 

classification have demonstrated promising 

results using various CNN architectures. For 

instance, Nahiduzzaman et al. [3] developed a 

server-based system achieving high accuracy but 

requiring continuous internet connectivity. 

Similarly, White et al. [6] proposed WasteNet for 

edge deployment using IoT hardware, while 

Yong et al. [8] utilized MobileNetV2 prioritizing 

lightweight deployment on mobile devices at the 

expense of accuracy in complex environments. 

However, these approaches either depend on 

specialized hardware [6], [19] or sacrifice 

classification performance for efficiency [8]. 

Furthermore, existing browser-based solutions 

remain limited due to model size constraints and 

lack of robust offline capabilities [16]. 

The gap addressed by this research lies in 

the absence of a truly accessible, client-side waste 

classification system that maintains high accuracy 

without requiring native app installation or 

continuous server connectivity. While previous 

studies have achieved strong performance 

through server-side processing [3] or dedicated 

edge devices [6], there is limited research on 

deploying large, high-accuracy CNN models 

directly in Progressive Web Apps with full offline 

functionality.  

The novelty of this work is threefold: (1) it 

successfully integrates the computationally 

intensive VGG16 architecture into a PWA 

environment using TensorFlow.js with GPU 

acceleration, (2) it implements comprehensive 

offline capabilities through Service Worker 

caching and IndexedDB, enabling waste 

classification without internet dependency, and 

(3) it provides a replicable framework for 

deploying large deep learning models at the edge 

through web browsers, making the technology 

accessible across devices without installation 

barriers. This approach specifically addresses the 

limitation noted by Nahiduzzaman et al. [3] 

regarding server dependency and extends beyond 

the lightweight-focused approaches [8] by 

demonstrating that high-accuracy models can be 

practically deployed client-side with appropriate 

optimization strategies. 

The selection of VGG16 over lighter 

alternatives like MobileNet is justified by its 

superior feature extraction capabilities for diverse 

waste images, as demonstrated in recent 

comparative studies [11], [12]. Despite its 

computational demands, VGG16's deeper 

architecture with 13 convolutional layers 

provides robust pattern recognition essential for 

handling 'real-world' waste images with varying 

lighting conditions, angles, and backgrounds 

[16]. The choice of PWA as the deployment 

platform addresses the digital divide by 

eliminating app store barriers and installation 

friction, while enabling cross-platform 

compatibility and offline functionality through 

Service Workers [17], critical features for 

reaching diverse user demographics in waste 

management education and practice. 

This research aims to bridge this gap by 

integrating the VGG16 model into a PWA. This 

approach emphasizes not only classification 

accuracy but also model loading efficiency, 

offline capabilities, and the overall user 

experience. Thus, this solution is expected to be a 

practical and inclusive alternative for technology-

based waste management. 

 

 

II.METHOD  

2.1. Data Collection and Preprocessing 

This study used a public waste 

classification dataset sourced from Kaggle 

(https://www.kaggle.com/code/divaanggreinihar

ahap/klasifikasi-gambar/input). The dataset was 

then uploaded to Google Drive for processing. Of 

the total available dataset, this study used 10,365 

preprocessed and validated images, divided into 

two classes: 5,709 images of inorganic waste and 

4,656 images of organic waste. This dataset 

selection prioritized those with high image 

diversity, including "real-world" conditions, to 

increase model robustness [2], [4], [16]. 

It should be noted that many waste 

classification datasets face the problem of class 

imbalance [3], where some types of waste (e.g., 

plastic and paper) dominate while other 

categories (e.g., hazardous materials) are 

underrepresented. Without intervention, this 

imbalance is likely to cause AI models to develop 

algorithmic bias [3], underperforming minority 

classes despite demonstrating high overall 

accuracy. Therefore, the need for datasets that 

support a more balanced class distribution, or the 

careful application of data augmentation (such as 

oversampling for minority classes) [5], [15],[19], 

is crucial to ensure fairness and efficiency across 

all bin categories. Using datasets with "real-

world" images is also crucial to improve the 

model's generalizability to real-world conditions 

[16]. 

The data preprocessing steps include: 

1. Dataset Preparation: Each dataset is 

automatically divided into training, validation, 

and testing parts in an 80:10:10 ratio. 

2. Image Scaling: All images are uniformly 

resized to 224x224 pixels with 3 color channels 

(RGB), in accordance with the standard input 

specifications for the VGG16 architecture. 

3. Pixel Normalization: Normalize pixel intensity 

values that were previously within a normalized 

range by dividing each value by 255. 

4. Zero-Centering and Color Sequence 

Conversion: Calculate the RGB average of the 
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dataset and subtract pixels from that average 

value (zero-centering). If the model expects a 

BGR channel sequence, the image will be 

converted from RGB to BGR. 

5. Data Augmentation: Apply rotation, 

width/height shift, zoom, and horizontal flip to 

reduce overfitting and increase dataset variation. 

 

Before inference, the input image from 

the camera is converted into a tensor, resized to 

224x224 pixels using bilinear interpolation, and 

normalized to a range of [0, 1]. The 

implementation uses tf.tidy to prevent memory 

leaks during this process, as demonstrated in 

Listing 1. 

 

Listing 1. Client-Side Image Preprocessing 

const preprocessImage = (imageElement) => { 

  return tf.tidy(() => { 

 // Convert DOM element to Tensor 

        const img = 

tf.browser.fromPixels(imageElement); 

     

 // Resize to VGG16 input standard (224x224) 

        const resized = tf.image.resizeBilinear(img, 

[224, 224]); 

     

 // Normalize pixel values (0-255 -> 0-1)  

// and add batch dimension [1, 224, 224, 3] 

        const normalized = 

resized.toFloat().div(255.0).expandDims(0); 

     

    return normalized; 

  }); 

}; 

 

2.2. Model Architecture and Training 

The VGG16 Convolutional Neural 

Network model was used as the feature extractor 

[7], [11]. This architecture consists of 13 

convolutional layers composed of 3x3 filters with 

stride 1 and the same padding, and 3 fully 

connected layers. Before the max pooling layer at 

2x2 with stride 2, two convolutional layers are 

passed through. Thus, valuable information is 

preserved despite the reduction in spatial 

dimensionality. The activation function used after 

the convolutional and fully connected layers is 

ReLU [8]. Softmax is used in the final layer and 

outputs probabilities for each category in the bin 

[7]. In other words, multi-class classification. 

To leverage the knowledge gained from 

training on large-scale datasets and accelerate the 

training process, a VGG16 model pre-trained on 

the ImageNet dataset was used as a baseline (pre-

trained model) [11], [12], [14]. In this case, 

efficiency was also a goal. VGG16 has powerful 

generic feature extraction, so it is preferable to 

freeze it first. The model only needs to be adjusted 

in the final fully connected layer to function on 

bin classification. This way, the model can learn 

relevant patterns in the dataset. This approach is 

desirable because it can reduce training time and 

required computational resources [6], [16]. 

The model training process was carried out with 

the following configuration: 

1. Optimizer: The Adam optimizer was used to 

optimize the model [7], with an initial learning 

rate set at 0.001. 

2. Loss Function: Categorical cross-entropy is 

used as the loss function [12], which is suitable 

for multi-class classification tasks. 

3. Callbacks: To monitor and control the training 

process, callbacks such as ModelCheckpoint and 

EarlyStopping are implemented. 

ModelCheckpoint stores the best model weights 

based on performance on the validation set (e.g., 

val_loss), while EarlyStopping stops training if 

validation performance does not improve after a 

certain number of epochs, preventing overfitting. 

4. Epochs and Batch Size: The number of epochs 

and batch size were determined experimentally to 

achieve optimal convergence and efficient 

resource utilization. 

 

2.3. Model Conversion to TensorFlow.js 

The VGG16 model, which had been 

trained and saved in HDF5 Keras (.h5) format, 

was converted to a format compatible with 

TensorFlow.js [17]. This was done using the 

tensorflowjs_converter command-line tool. The 

conversion resulted in a model.json file and 

several binary shard files containing the model 

weights. The VGG16 model is very large, 

containing approximately 138 million 

parameters[3], and its weight files are 

approximately 100 MB. Even after conversion to 

TensorFlow.js format, the separate binary files 

are expected to remain large. This large file size 

significantly impedes the initial download time of 

the PWA and memory consumption in the user's 

browser. This significantly impacts the user 

experience with the PWA, which is expected to 

be fast and highly responsive. Therefore, simply 

converting the model is not sufficient; substantial 

model optimization strategies[18] need to be 

implemented before or after conversion to make 

the VGG16 model practically suitable for PWA 

deployment. 

 

2.4. Progressive Web App (PWA) Development 

Figure 1 illustrates the overall system 

flowchart, demonstrating the sequential process 

from user image capture through preprocessing, 

model inference, and result display. Figure 2 

provides a detailed view of the client-side 

processing logic, emphasizing the conditional 

flow for cache utilization and the fallback 

mechanism for network retrieval when cached 

models are unavailable. These diagrams highlight 
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the system's ability to function independently of 

server connectivity once the initial model is 

cached. 

To provide a complete overview of the 

system flow, the application's overall architecture 

and logical flow diagram is presented below: 

 

 
Figure 1. Flowchart of a PWA-Based Waste 

Classification System 

 
 

Figure 2. Flowchart of a PWA-Based Waste 

Classification System 

 

To ensure the application functions 

offline and loads the large model efficiently, a 

custom Service Worker strategy is implemented. 

Listing 2 shows how the Service Worker 

intercepts network requests and serves cached 

assets, which is critical for the PWA performance 

 

Listing 2. Service Worker Caching Strategy 

// Service Worker (sw.js) 

self.addEventListener('fetch', (event) => { 

  // Intercept request 

  event.respondWith( 

    caches.match(event.request) 

      .then((cachedResponse) => { 

        // Return cached file if available 

        if (cachedResponse) { 

          return cachedResponse; 

        } 

        // Otherwise, fetch from network 

        return 

fetch(event.request).then((networkResponse) => 

{ 

          // Cache the new file for future use 

          return caches.open('vgg16-cache-

v1').then((cache) => { 

            cache.put(event.request, 

networkResponse.clone()); 

            return networkResponse; 

          }); 

        }); 

      }) 

  ); 

}); 

 

To ensure the system runs efficiently on 

mobile devices with limited resources, the 

application architecture is designed to prioritize 

client-side processing. Figure 3 illustrates the 

three-layer system architecture: the client-side 

processing unit (React UI and TensorFlow.js), the 

service layer (Service Worker and IndexedDB for 

offline capability), and the cloud backend 

(Firebase for optional data synchronization). As 

depicted, the VGG16 model executes entirely on 

the user's device using the WebGL backend for 

GPU acceleration, eliminating server dependency 

during inference. 

 

 
Figure 3. System Block Diagram of the Proposed 

PWA Waste Classification. 

 

As shown in Figure 3, the system 

consists of three main layers: the client-side 

processing unit (React UI and TensorFlow.js), the 

service layer (Service Worker and IndexedDB for 

offline capability), and the cloud backend 

(Firebase). The VGG16 model is executed 

directly on the user's device using the WebGL 
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backend for GPU acceleration. To ensure optimal 

performance on mobile devices, the system 

explicitly configures TensorFlow.js to use the 

WebGL backend with specific memory 

optimizations, as shown in Listing 3. 

 

Listing 3. WebGL Backend Configuration for 

GPU Acceleration 

// Initialize backend for better performance 

async function initBackend() { 

  try { 

    if (tf.getBackend() !== 'webgl') { 

      await tf.setBackend('webgl'); 

      await tf.ready(); 

       

      // Enable float16 textures for 

memory efficiency 

      if 

(tf.ENV.getBool('WEBGL_VERSION') === 2) { 

        

tf.env().set('WEBGL_FORCE_F16_TEXTURE

S', true); 

        

tf.env().set('WEBGL_DELETE_TEXTURE_TH

RESHOLD', 0); 

      } 

    } 

  } catch (err) { 

    console.warn('Fallback to CPU:', err); 

    await tf.setBackend('cpu');   

 } 

} 

 

 

The application was developed as a 

Progressive Web App (PWA) using React for the 

frontend, Hapi as the backend API, and Firebase 

for data storage. The manifest.json file is used to 

define the application name, icon, start URL, 

standalone view mode, and theme and 

background colors. A service worker is registered 

to support asset caching, enable offline access, 

and speed up loading. The VGG16 waste 

classification model in TensorFlow.js format is 

loaded directly on the frontend asynchronously, 

with priority fetching from the IndexedDB cache 

for optimal performance. Images captured by the 

camera or uploaded by the user are processed 

directly on the client side (resize to 224x224, 

normalize, and adjust colors) before inference is 

performed by the model. This process runs on the 

main thread or a web worker to maintain a 

responsive UI, and the classification results are 

displayed in real time. 

 

 

III.RESULT AND DISCUSSION 

 

3.1. Presentation of Results 

To measure the performance of the 

classification model, standard evaluation metrics 

were calculated based on the confusion matrix 

values. The formulas used are as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
× 100% 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
× 100%  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 ×  100%   

  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×   𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
  

 

Where TP represent True Positives, TN  is 

True Negatives, FP is False Positives, and FN is 

False Negatives. 

The retrained VGG16 model achieved an 

overall accuracy of 0.94 on the test set. Evaluation 

of each category using precision, recall, and F1-

score metrics yielded the following results: 

 

Table 1: Comparison of VGG16 Model Waste 

Classification Performance 

Waste 

Category 
Precision 

(%) 
Recall 

(%) 
F1-

Score 

(%) 

Inorganic 95 96 95 

Organic 94 93 94 

Total 

Accuracy 

  
  

94 

 

 

 
Figure 4: Confusion Matrix 

 

Figure 4 presents a confusion matrix 

detailing the performance of the VGG16 model 

on 2,001 test datasets. This matrix shows that the 

model successfully identified 1,090 images as 

'Inorganic' (True Positives) correctly and 800 
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images as 'Organic' (True Positives). There were 

two main types of errors: 63 'Organic' images 

were misclassified as 'Inorganic' (False 

Positives), and 48 'Inorganic' images were 

misclassified as 'Organic' (False Negatives). This 

relatively small number of prediction errors (a 

total of 111 out of 2001) confirms the model's 

high accuracy of 94%. This data also aligns with 

Table 1, which shows a slightly higher recall for 

the Inorganic class (96%) than for the Organic 

class (93%), indicating the model is slightly more 

reliable in recognizing inorganic waste. 

 

 
Figure 5: Accuracy Graph 

 

Figure 5 displays a graph of the model's 

training history, plotting the accuracy (left) and 

loss (right) metrics for the training data (blue line) 

and validation data (orange line) over 15 epochs. 

The accuracy graph shows that both training 

accuracy (accuracy) and validation accuracy 

(val_accuracy) have steadily increased. 

Concurrently, the loss graph shows a consistent 

decline for both data sets (loss and val_loss). 

Importantly, there is no significant gap or 

divergence between the training and validation 

curves. This demonstrates that the model does not 

suffer from severe overfitting and has good 

generalization ability when applied to new data. 

In PWA Inference Performance, the 100 

MB VGG16 model in TensorFlow.js format 

affects the initial download and loading time of 

the model. For a resolution of 224x224 pixels, the 

inference time is approximately 109.79 ms, but 

for a resolution of 512x512, it jumps to 18 

seconds. 

 

Example Application Interface 

 

 
Figure 6: PWA Interface for Automatic Waste 

Classification 

 

Figure 6 showcases the responsive PWA 

interface during real-time waste classification. 

The clean, intuitive design enables users to 

capture or upload waste images and receive 

instant classification results with confidence 

scores. The interface's simplicity ensures 

accessibility for diverse user demographics, from 

students to waste management practitioners, 

supporting the system's educational and practical 

objectives. 

 

3.2. Discussion 

  

VGG16 Model Performance in Waste 

Classification: VGG16 demonstrates adequate 

classification performance with a total accuracy 

of 94%. This model performs quite well in 

classifying organic and inorganic waste 

categories. This indicates that the VGG16 

convolutional architecture has captured 

distinctive visual features such as texture and 

dominant color. The performance degradation in 

garbage classification is likely due to the uneven 

number of samples in the training dataset and the 

similarity between categories. Deep learning 

models are powerful, but they still require the 

quality and diversity of the dataset [4]. 

 

Table 2. Comparison with Previous Waste 

Classification Systems 

Study Model 

Acc. 

(%) Deployment Internet Inst. Device 

This 

Work VGG16 94.0 PWA No No Any 

[3] Ens. 97.2 Server Yes Yes Mob. 

[6] WNet 91.8 IoT/Edge No HW Ded. 

[8] MNetV2 89.3 Mob. App No Yes Mob. 

[7] VGG16 95.1 Server Yes Yes Mob. 

[16] Custom 88.5 Edge No HW Ded. 

Notes: Acc.=Accuracy; Inst.=Installation; 

Ens.=Ensemble CNN; WNet=WasteNet; 
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MNetV2=MobileNetV2; HW=Hardware Setup; 

Mob.=Mobile; Ded.=Dedicated Device. 

 

As shown in Table 2, the proposed system 

achieves competitive accuracy (94%) while 

uniquely combining client-side processing with 

zero installation requirements. While 

Nahiduzzaman et al. [3] achieved higher accuracy 

(97.2%), their server-dependent architecture 

introduces latency and privacy concerns from 

continuous data transmission. In contrast, our 

client-side approach processes images locally, 

eliminating these issues at the cost of a modest 

3.2% accuracy reduction. Compared to 

MobileNetV2-based solutions [8], which 

prioritize model lightness over accuracy, our 

VGG16 implementation demonstrates that larger, 

more accurate models can be practically deployed 

in browsers through strategic optimizations (GPU 

acceleration, caching). The 4.7% accuracy 

improvement over MobileNetV2 justifies the 

additional computational requirements, 

particularly for educational and high-stakes 

sorting applications where classification 

reliability is paramount. Unlike IoT-based edge 

systems [6], [19] that require specialized 

hardware setup, the PWA approach leverages 

ubiquitous smartphone browsers, dramatically 

lowering the barrier to entry for waste 

management education and community 

engagement. This approach also offers a more 

accessible alternative to dedicated IoT hardware 

solutions, such as the LoRa-GPS smart bins [18]. 

This accessibility advantage outweighs the 2.2% 

accuracy difference with hardware-optimized 

WasteNet [6], especially in resource-constrained 

settings where purchasing dedicated devices is 

impractical. The key contribution of this work lies 

in demonstrating that high-accuracy CNN models 

(138M parameters) can be effectively deployed at 

the edge through web technologies, achieving 

94% accuracy with full offline capability---a 

combination not demonstrated in prior browser-

based solutions [16]. This validates PWA + 

TensorFlow.js as a viable platform for deploying 

computationally intensive AI models in socially 

impactful applications. 

The implementation of a waste 

classification system has the potential to automate 

the manual process of waste sorting [3], [7]. This 

may raise concerns about job losses. However, it 

creates new opportunities in the form of 

digitalization in the waste management sector, 

such as retraining workers to become educators or 

operators in the waste sorting process. The 

integration of AI into public applications must 

address fairness and transparency. For example, 

if a model is more accurate with certain types of 

waste, this could lead to classification bias [3]. 

Furthermore, classification results, along with 

user data, must be handled within strict privacy 

policy constraints. While the goal of this 

application is to manage waste more effectively, 

there are still drawbacks in terms of energy 

impact due to indirect energy use from training 

and inference. Implementing a lightweight and 

efficient model is a crucial first step towards 

environmental sustainability in the digital realm 

[8], [15]. 

This system is accessible from various 

devices and network conditions because it adopts 

the PWA (Progressive Web App) principle. Even 

without an internet connection, users can still 

utilize the classification feature. Push 

notifications and homescreen placement increase 

long-term user engagement. The app's 

widespread use of low- to mid-range devices and 

responsiveness contribute to the reduction of the 

digital divide. These features align with the 

mission of educating and engaging the public 

about responsible waste management, while 

simultaneously making this technology an 

inclusive and sustainable solution. 

 

IV.CONCLUSION  

This research successfully developed an 

accessible automatic waste classification system 

by integrating the VGG16 CNN model into a 

Progressive Web Application, demonstrating that 

high-accuracy deep learning models can be 

effectively deployed client-side for offline waste 

classification. The system achieved 94% 

accuracy on a validated dataset of 10,365 images 

through strategic implementation of 

TensorFlow.js with GPU acceleration (WebGL 

backend) and robust caching mechanisms 

(Service Worker and IndexedDB), confirming 

that PWA technology can support 

computationally intensive AI applications 

without sacrificing accessibility or offline 

functionality. The main contribution of this work 

is providing a replicable framework for deploying 

large-scale CNN models (138M parameters) at 

the edge through web browsers, eliminating 

installation barriers and server dependencies that 

limit existing solutions. This approach directly 

addresses the research gap in client-side waste 

classification by demonstrating that accuracy 

need not be sacrificed for accessibility—our 

VGG16 implementation outperformed 

lightweight alternatives while maintaining 

universal browser compatibility. The primary 

limitation remains the 100 MB model size 

causing initial load latency on slow networks. 

Future work should explore: (1) advanced 

compression techniques (quantization, pruning, 

knowledge distillation) to reduce model size 

without significant accuracy loss, (2) lighter 

architectures like EfficientNet for comparative 

evaluation, and (3) dataset expansion to include 
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hazardous waste and underrepresented recyclable 

categories, enhancing system robustness and 

reducing classification bias. These improvements 

will further strengthen PWA-based AI 

deployment as a sustainable, inclusive solution 

for environmental education and waste 

management practice. 
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