
Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 12 No. 2 Tahun 2025 ISSN: 2580-2291

105
© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Received November 15th 2025; accepted December 24th 2025. Date of publication December 31st 2025
Digital Object Identifier: https://doi.org/10/25047/jtit.v12i2.458

CNN Implementation in Progressive Web App

for Automatic Garbage Classification using

TensorFlow.js
EKA SETYABUDI1, NOORA QOTRUN NADA2, MEGA NOVITA3

1Universitas PGRI Semarang, Semarang, Indonesia
2Universitas PGRI Semarang, Semarang, Indonesia
3Universitas PGRI Semarang, Semarang, Indonesia

CORESPONDING AUTHOR: EKA SETYABUDI (email:22670144@upgris.ac.id)

ABSTRACT The substantial and continuously increasing volume of global solid waste has evolved into

a critical environmental challenge. This issue is further exacerbated by the inherent inefficiency of

conventional manual sorting techniques, which are not only costly but also pose significant health risks to

workers due to exposure to hazardous materials. To address the limitations of existing server-dependent

systems, this research develops and evaluates an automated, client-side waste classification system. We

employ a Convolutional Neural Network (CNN) based on the VGG16 architecture, integrated into a

Progressive Web App (PWA) to ensure broad accessibility across devices without requiring native

installation. The methodology involves retraining the VGG16 model using transfer learning on a validated

public dataset of 10,365 images, categorized into organic and inorganic waste. Preprocessing steps

included resizing images to 224x224 pixels, pixel normalization, and data augmentation to enhance model

robustness against real-world variations. Subsequently, the trained model was converted into the web-

compatible TensorFlow.js format and deployed within a PWA framework that utilizes Service Workers

and IndexedDB caching mechanisms to enable offline functionality. Results indicate that despite the

computational challenges posed by the model's large size, the system successfully performed efficient

client-side inference by prioritizing WebGL backend for GPU acceleration. The model achieved an overall

accuracy of 94% on the test dataset, with a precision of 95% for inorganic waste. These findings confirm

that deploying high-accuracy CNN models at the edge using PWA and TensorFlow.js is a feasible and

promising strategy for practical, technology-based waste management and environmental education.

KEYWORDS: Waste Classification; Convolutional Neural Network; VGG16; Progressive Web

App; TensorFlow.js.

I.INTRODUCTION

The simultaneous impact of population

growth and urbanization on a global scale has

increased the generation of solid waste [1], [2].

Ineffective waste management, particularly in

sorting and recycling, poses a global

environmental and social challenge [1], [3], [4].

This contributes to increased greenhouse gas

emissions, environmental pollution, and the

depletion of natural resources [5].

The manual process of waste sorting and

collection has many shortcomings [4], [6], [7]. In

addition to high costs, this method poses health

problems for workers due to exposure to

pathogens and toxic substances [1], [5]. This

problem is exacerbated by low public awareness

of separating household waste [8], which

contaminates recyclable materials and increases

the volume of waste sent to landfills.

In this context, there is a need for more

sophisticated and efficient automated systems

with a broader user interface [2], [3]. To achieve

this, the system must be intelligent, easy to

operate, lightweight, and able to run on a variety

of devices. This solution can be accessed using a

browser-based cross-platform PWA without

requiring additional app installation.

Furthermore, offline features and home screen

deployment provide a native app-like experience.

Deep learning techniques, particularly

Convolutional Neural Networks (CNNs), have

made significant contributions to image

classification [20], including trash classification

[8], [9], [10], [11], [12], [13]. Implemented CNN

architectures such as ResNet, Inception,

MobileNet, VGG, and TrashNet have achieved

excellent accuracy [8], [9], [12], [14]. However,

most classification systems still rely on servers or

native applications... [lanjutkan sampai] ...In

general, the biggest challenge is how to combine

large models with the accuracy, efficiency, and

lightweight features of a PWA platform.

Eka Setyabudi: CNN Implementation in Progressive Web App for Automatic Garbage
Classification using TensorFlow.js

106
© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Recent advances in automatic waste

classification have demonstrated promising

results using various CNN architectures. For

instance, Nahiduzzaman et al. [3] developed a

server-based system achieving high accuracy but

requiring continuous internet connectivity.

Similarly, White et al. [6] proposed WasteNet for

edge deployment using IoT hardware, while

Yong et al. [8] utilized MobileNetV2 prioritizing

lightweight deployment on mobile devices at the

expense of accuracy in complex environments.

However, these approaches either depend on

specialized hardware [6], [19] or sacrifice

classification performance for efficiency [8].

Furthermore, existing browser-based solutions

remain limited due to model size constraints and

lack of robust offline capabilities [16].

The gap addressed by this research lies in

the absence of a truly accessible, client-side waste

classification system that maintains high accuracy

without requiring native app installation or

continuous server connectivity. While previous

studies have achieved strong performance

through server-side processing [3] or dedicated

edge devices [6], there is limited research on

deploying large, high-accuracy CNN models

directly in Progressive Web Apps with full offline

functionality.

The novelty of this work is threefold: (1) it

successfully integrates the computationally

intensive VGG16 architecture into a PWA

environment using TensorFlow.js with GPU

acceleration, (2) it implements comprehensive

offline capabilities through Service Worker

caching and IndexedDB, enabling waste

classification without internet dependency, and

(3) it provides a replicable framework for

deploying large deep learning models at the edge

through web browsers, making the technology

accessible across devices without installation

barriers. This approach specifically addresses the

limitation noted by Nahiduzzaman et al. [3]

regarding server dependency and extends beyond

the lightweight-focused approaches [8] by

demonstrating that high-accuracy models can be

practically deployed client-side with appropriate

optimization strategies.

The selection of VGG16 over lighter

alternatives like MobileNet is justified by its

superior feature extraction capabilities for diverse

waste images, as demonstrated in recent

comparative studies [11], [12]. Despite its

computational demands, VGG16's deeper

architecture with 13 convolutional layers

provides robust pattern recognition essential for

handling 'real-world' waste images with varying

lighting conditions, angles, and backgrounds

[16]. The choice of PWA as the deployment

platform addresses the digital divide by

eliminating app store barriers and installation

friction, while enabling cross-platform

compatibility and offline functionality through

Service Workers [17], critical features for

reaching diverse user demographics in waste

management education and practice.

This research aims to bridge this gap by

integrating the VGG16 model into a PWA. This

approach emphasizes not only classification

accuracy but also model loading efficiency,

offline capabilities, and the overall user

experience. Thus, this solution is expected to be a

practical and inclusive alternative for technology-

based waste management.

II.METHOD

2.1. Data Collection and Preprocessing

This study used a public waste

classification dataset sourced from Kaggle

(https://www.kaggle.com/code/divaanggreinihar

ahap/klasifikasi-gambar/input). The dataset was

then uploaded to Google Drive for processing. Of

the total available dataset, this study used 10,365

preprocessed and validated images, divided into

two classes: 5,709 images of inorganic waste and

4,656 images of organic waste. This dataset

selection prioritized those with high image

diversity, including "real-world" conditions, to

increase model robustness [2], [4], [16].

It should be noted that many waste

classification datasets face the problem of class

imbalance [3], where some types of waste (e.g.,

plastic and paper) dominate while other

categories (e.g., hazardous materials) are

underrepresented. Without intervention, this

imbalance is likely to cause AI models to develop

algorithmic bias [3], underperforming minority

classes despite demonstrating high overall

accuracy. Therefore, the need for datasets that

support a more balanced class distribution, or the

careful application of data augmentation (such as

oversampling for minority classes) [5], [15],[19],

is crucial to ensure fairness and efficiency across

all bin categories. Using datasets with "real-

world" images is also crucial to improve the

model's generalizability to real-world conditions

[16].

The data preprocessing steps include:

1. Dataset Preparation: Each dataset is

automatically divided into training, validation,

and testing parts in an 80:10:10 ratio.

2. Image Scaling: All images are uniformly

resized to 224x224 pixels with 3 color channels

(RGB), in accordance with the standard input

specifications for the VGG16 architecture.

3. Pixel Normalization: Normalize pixel intensity

values that were previously within a normalized

range by dividing each value by 255.

4. Zero-Centering and Color Sequence

Conversion: Calculate the RGB average of the

Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 12 No. 2 Tahun 2025 ISSN: 2580-2291

107
© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

dataset and subtract pixels from that average

value (zero-centering). If the model expects a

BGR channel sequence, the image will be

converted from RGB to BGR.

5. Data Augmentation: Apply rotation,

width/height shift, zoom, and horizontal flip to

reduce overfitting and increase dataset variation.

Before inference, the input image from

the camera is converted into a tensor, resized to

224x224 pixels using bilinear interpolation, and

normalized to a range of [0, 1]. The

implementation uses tf.tidy to prevent memory

leaks during this process, as demonstrated in

Listing 1.

Listing 1. Client-Side Image Preprocessing

const preprocessImage = (imageElement) => {

 return tf.tidy(() => {

 // Convert DOM element to Tensor

 const img =

tf.browser.fromPixels(imageElement);

 // Resize to VGG16 input standard (224x224)

 const resized = tf.image.resizeBilinear(img,

[224, 224]);

 // Normalize pixel values (0-255 -> 0-1)

// and add batch dimension [1, 224, 224, 3]

 const normalized =

resized.toFloat().div(255.0).expandDims(0);

 return normalized;

 });

};

2.2. Model Architecture and Training

The VGG16 Convolutional Neural

Network model was used as the feature extractor

[7], [11]. This architecture consists of 13

convolutional layers composed of 3x3 filters with

stride 1 and the same padding, and 3 fully

connected layers. Before the max pooling layer at

2x2 with stride 2, two convolutional layers are

passed through. Thus, valuable information is

preserved despite the reduction in spatial

dimensionality. The activation function used after

the convolutional and fully connected layers is

ReLU [8]. Softmax is used in the final layer and

outputs probabilities for each category in the bin

[7]. In other words, multi-class classification.

To leverage the knowledge gained from

training on large-scale datasets and accelerate the

training process, a VGG16 model pre-trained on

the ImageNet dataset was used as a baseline (pre-

trained model) [11], [12], [14]. In this case,

efficiency was also a goal. VGG16 has powerful

generic feature extraction, so it is preferable to

freeze it first. The model only needs to be adjusted

in the final fully connected layer to function on

bin classification. This way, the model can learn

relevant patterns in the dataset. This approach is

desirable because it can reduce training time and

required computational resources [6], [16].

The model training process was carried out with

the following configuration:

1. Optimizer: The Adam optimizer was used to

optimize the model [7], with an initial learning

rate set at 0.001.

2. Loss Function: Categorical cross-entropy is

used as the loss function [12], which is suitable

for multi-class classification tasks.

3. Callbacks: To monitor and control the training

process, callbacks such as ModelCheckpoint and

EarlyStopping are implemented.

ModelCheckpoint stores the best model weights

based on performance on the validation set (e.g.,

val_loss), while EarlyStopping stops training if

validation performance does not improve after a

certain number of epochs, preventing overfitting.

4. Epochs and Batch Size: The number of epochs

and batch size were determined experimentally to

achieve optimal convergence and efficient

resource utilization.

2.3. Model Conversion to TensorFlow.js

The VGG16 model, which had been

trained and saved in HDF5 Keras (.h5) format,

was converted to a format compatible with

TensorFlow.js [17]. This was done using the

tensorflowjs_converter command-line tool. The

conversion resulted in a model.json file and

several binary shard files containing the model

weights. The VGG16 model is very large,

containing approximately 138 million

parameters[3], and its weight files are

approximately 100 MB. Even after conversion to

TensorFlow.js format, the separate binary files

are expected to remain large. This large file size

significantly impedes the initial download time of

the PWA and memory consumption in the user's

browser. This significantly impacts the user

experience with the PWA, which is expected to

be fast and highly responsive. Therefore, simply

converting the model is not sufficient; substantial

model optimization strategies[18] need to be

implemented before or after conversion to make

the VGG16 model practically suitable for PWA

deployment.

2.4. Progressive Web App (PWA) Development

Figure 1 illustrates the overall system

flowchart, demonstrating the sequential process

from user image capture through preprocessing,

model inference, and result display. Figure 2

provides a detailed view of the client-side

processing logic, emphasizing the conditional

flow for cache utilization and the fallback

mechanism for network retrieval when cached

models are unavailable. These diagrams highlight

Eka Setyabudi: CNN Implementation in Progressive Web App for Automatic Garbage
Classification using TensorFlow.js

108
© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

the system's ability to function independently of

server connectivity once the initial model is

cached.

To provide a complete overview of the

system flow, the application's overall architecture

and logical flow diagram is presented below:

Figure 1. Flowchart of a PWA-Based Waste

Classification System

Figure 2. Flowchart of a PWA-Based Waste

Classification System

To ensure the application functions

offline and loads the large model efficiently, a

custom Service Worker strategy is implemented.

Listing 2 shows how the Service Worker

intercepts network requests and serves cached

assets, which is critical for the PWA performance

Listing 2. Service Worker Caching Strategy

// Service Worker (sw.js)

self.addEventListener('fetch', (event) => {

 // Intercept request

 event.respondWith(

 caches.match(event.request)

 .then((cachedResponse) => {

 // Return cached file if available

 if (cachedResponse) {

 return cachedResponse;

 }

 // Otherwise, fetch from network

 return

fetch(event.request).then((networkResponse) =>

{

 // Cache the new file for future use

 return caches.open('vgg16-cache-

v1').then((cache) => {

 cache.put(event.request,

networkResponse.clone());

 return networkResponse;

 });

 });

 })

);

});

To ensure the system runs efficiently on

mobile devices with limited resources, the

application architecture is designed to prioritize

client-side processing. Figure 3 illustrates the

three-layer system architecture: the client-side

processing unit (React UI and TensorFlow.js), the

service layer (Service Worker and IndexedDB for

offline capability), and the cloud backend

(Firebase for optional data synchronization). As

depicted, the VGG16 model executes entirely on

the user's device using the WebGL backend for

GPU acceleration, eliminating server dependency

during inference.

Figure 3. System Block Diagram of the Proposed

PWA Waste Classification.

As shown in Figure 3, the system

consists of three main layers: the client-side

processing unit (React UI and TensorFlow.js), the

service layer (Service Worker and IndexedDB for

offline capability), and the cloud backend

(Firebase). The VGG16 model is executed

directly on the user's device using the WebGL

Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 12 No. 2 Tahun 2025 ISSN: 2580-2291

109
© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

backend for GPU acceleration. To ensure optimal

performance on mobile devices, the system

explicitly configures TensorFlow.js to use the

WebGL backend with specific memory

optimizations, as shown in Listing 3.

Listing 3. WebGL Backend Configuration for

GPU Acceleration

// Initialize backend for better performance

async function initBackend() {

 try {

 if (tf.getBackend() !== 'webgl') {

 await tf.setBackend('webgl');

 await tf.ready();

 // Enable float16 textures for

memory efficiency

 if

(tf.ENV.getBool('WEBGL_VERSION') === 2) {

tf.env().set('WEBGL_FORCE_F16_TEXTURE

S', true);

tf.env().set('WEBGL_DELETE_TEXTURE_TH

RESHOLD', 0);

 }

 }

 } catch (err) {

 console.warn('Fallback to CPU:', err);

 await tf.setBackend('cpu');

 }

}

The application was developed as a

Progressive Web App (PWA) using React for the

frontend, Hapi as the backend API, and Firebase

for data storage. The manifest.json file is used to

define the application name, icon, start URL,

standalone view mode, and theme and

background colors. A service worker is registered

to support asset caching, enable offline access,

and speed up loading. The VGG16 waste

classification model in TensorFlow.js format is

loaded directly on the frontend asynchronously,

with priority fetching from the IndexedDB cache

for optimal performance. Images captured by the

camera or uploaded by the user are processed

directly on the client side (resize to 224x224,

normalize, and adjust colors) before inference is

performed by the model. This process runs on the

main thread or a web worker to maintain a

responsive UI, and the classification results are

displayed in real time.

III.RESULT AND DISCUSSION

3.1. Presentation of Results

To measure the performance of the

classification model, standard evaluation metrics

were calculated based on the confusion matrix

values. The formulas used are as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100%

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100%

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 × 100%

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Where TP represent True Positives, TN is

True Negatives, FP is False Positives, and FN is

False Negatives.

The retrained VGG16 model achieved an

overall accuracy of 0.94 on the test set. Evaluation

of each category using precision, recall, and F1-

score metrics yielded the following results:

Table 1: Comparison of VGG16 Model Waste

Classification Performance

Waste

Category
Precision

(%)
Recall

(%)
F1-

Score

(%)

Inorganic 95 96 95

Organic 94 93 94

Total

Accuracy

94

Figure 4: Confusion Matrix

Figure 4 presents a confusion matrix

detailing the performance of the VGG16 model

on 2,001 test datasets. This matrix shows that the

model successfully identified 1,090 images as

'Inorganic' (True Positives) correctly and 800

Eka Setyabudi: CNN Implementation in Progressive Web App for Automatic Garbage
Classification using TensorFlow.js

110
© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

images as 'Organic' (True Positives). There were

two main types of errors: 63 'Organic' images

were misclassified as 'Inorganic' (False

Positives), and 48 'Inorganic' images were

misclassified as 'Organic' (False Negatives). This

relatively small number of prediction errors (a

total of 111 out of 2001) confirms the model's

high accuracy of 94%. This data also aligns with

Table 1, which shows a slightly higher recall for

the Inorganic class (96%) than for the Organic

class (93%), indicating the model is slightly more

reliable in recognizing inorganic waste.

Figure 5: Accuracy Graph

Figure 5 displays a graph of the model's

training history, plotting the accuracy (left) and

loss (right) metrics for the training data (blue line)

and validation data (orange line) over 15 epochs.

The accuracy graph shows that both training

accuracy (accuracy) and validation accuracy

(val_accuracy) have steadily increased.

Concurrently, the loss graph shows a consistent

decline for both data sets (loss and val_loss).

Importantly, there is no significant gap or

divergence between the training and validation

curves. This demonstrates that the model does not

suffer from severe overfitting and has good

generalization ability when applied to new data.

In PWA Inference Performance, the 100

MB VGG16 model in TensorFlow.js format

affects the initial download and loading time of

the model. For a resolution of 224x224 pixels, the

inference time is approximately 109.79 ms, but

for a resolution of 512x512, it jumps to 18

seconds.

Example Application Interface

Figure 6: PWA Interface for Automatic Waste

Classification

Figure 6 showcases the responsive PWA

interface during real-time waste classification.

The clean, intuitive design enables users to

capture or upload waste images and receive

instant classification results with confidence

scores. The interface's simplicity ensures

accessibility for diverse user demographics, from

students to waste management practitioners,

supporting the system's educational and practical

objectives.

3.2. Discussion

VGG16 Model Performance in Waste

Classification: VGG16 demonstrates adequate

classification performance with a total accuracy

of 94%. This model performs quite well in

classifying organic and inorganic waste

categories. This indicates that the VGG16

convolutional architecture has captured

distinctive visual features such as texture and

dominant color. The performance degradation in

garbage classification is likely due to the uneven

number of samples in the training dataset and the

similarity between categories. Deep learning

models are powerful, but they still require the

quality and diversity of the dataset [4].

Table 2. Comparison with Previous Waste

Classification Systems

Study Model

Acc.

(%) Deployment Internet Inst. Device

This

Work VGG16 94.0 PWA No No Any

[3] Ens. 97.2 Server Yes Yes Mob.

[6] WNet 91.8 IoT/Edge No HW Ded.

[8] MNetV2 89.3 Mob. App No Yes Mob.

[7] VGG16 95.1 Server Yes Yes Mob.

[16] Custom 88.5 Edge No HW Ded.

Notes: Acc.=Accuracy; Inst.=Installation;

Ens.=Ensemble CNN; WNet=WasteNet;

Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 12 No. 2 Tahun 2025 ISSN: 2580-2291

111
© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MNetV2=MobileNetV2; HW=Hardware Setup;

Mob.=Mobile; Ded.=Dedicated Device.

As shown in Table 2, the proposed system

achieves competitive accuracy (94%) while

uniquely combining client-side processing with

zero installation requirements. While

Nahiduzzaman et al. [3] achieved higher accuracy

(97.2%), their server-dependent architecture

introduces latency and privacy concerns from

continuous data transmission. In contrast, our

client-side approach processes images locally,

eliminating these issues at the cost of a modest

3.2% accuracy reduction. Compared to

MobileNetV2-based solutions [8], which

prioritize model lightness over accuracy, our

VGG16 implementation demonstrates that larger,

more accurate models can be practically deployed

in browsers through strategic optimizations (GPU

acceleration, caching). The 4.7% accuracy

improvement over MobileNetV2 justifies the

additional computational requirements,

particularly for educational and high-stakes

sorting applications where classification

reliability is paramount. Unlike IoT-based edge

systems [6], [19] that require specialized

hardware setup, the PWA approach leverages

ubiquitous smartphone browsers, dramatically

lowering the barrier to entry for waste

management education and community

engagement. This approach also offers a more

accessible alternative to dedicated IoT hardware

solutions, such as the LoRa-GPS smart bins [18].

This accessibility advantage outweighs the 2.2%

accuracy difference with hardware-optimized

WasteNet [6], especially in resource-constrained

settings where purchasing dedicated devices is

impractical. The key contribution of this work lies

in demonstrating that high-accuracy CNN models

(138M parameters) can be effectively deployed at

the edge through web technologies, achieving

94% accuracy with full offline capability---a

combination not demonstrated in prior browser-

based solutions [16]. This validates PWA +

TensorFlow.js as a viable platform for deploying

computationally intensive AI models in socially

impactful applications.

The implementation of a waste

classification system has the potential to automate

the manual process of waste sorting [3], [7]. This

may raise concerns about job losses. However, it

creates new opportunities in the form of

digitalization in the waste management sector,

such as retraining workers to become educators or

operators in the waste sorting process. The

integration of AI into public applications must

address fairness and transparency. For example,

if a model is more accurate with certain types of

waste, this could lead to classification bias [3].

Furthermore, classification results, along with

user data, must be handled within strict privacy

policy constraints. While the goal of this

application is to manage waste more effectively,

there are still drawbacks in terms of energy

impact due to indirect energy use from training

and inference. Implementing a lightweight and

efficient model is a crucial first step towards

environmental sustainability in the digital realm

[8], [15].

This system is accessible from various

devices and network conditions because it adopts

the PWA (Progressive Web App) principle. Even

without an internet connection, users can still

utilize the classification feature. Push

notifications and homescreen placement increase

long-term user engagement. The app's

widespread use of low- to mid-range devices and

responsiveness contribute to the reduction of the

digital divide. These features align with the

mission of educating and engaging the public

about responsible waste management, while

simultaneously making this technology an

inclusive and sustainable solution.

IV.CONCLUSION

This research successfully developed an

accessible automatic waste classification system

by integrating the VGG16 CNN model into a

Progressive Web Application, demonstrating that

high-accuracy deep learning models can be

effectively deployed client-side for offline waste

classification. The system achieved 94%

accuracy on a validated dataset of 10,365 images

through strategic implementation of

TensorFlow.js with GPU acceleration (WebGL

backend) and robust caching mechanisms

(Service Worker and IndexedDB), confirming

that PWA technology can support

computationally intensive AI applications

without sacrificing accessibility or offline

functionality. The main contribution of this work

is providing a replicable framework for deploying

large-scale CNN models (138M parameters) at

the edge through web browsers, eliminating

installation barriers and server dependencies that

limit existing solutions. This approach directly

addresses the research gap in client-side waste

classification by demonstrating that accuracy

need not be sacrificed for accessibility—our

VGG16 implementation outperformed

lightweight alternatives while maintaining

universal browser compatibility. The primary

limitation remains the 100 MB model size

causing initial load latency on slow networks.

Future work should explore: (1) advanced

compression techniques (quantization, pruning,

knowledge distillation) to reduce model size

without significant accuracy loss, (2) lighter

architectures like EfficientNet for comparative

evaluation, and (3) dataset expansion to include

Eka Setyabudi: CNN Implementation in Progressive Web App for Automatic Garbage
Classification using TensorFlow.js

112
© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

hazardous waste and underrepresented recyclable

categories, enhancing system robustness and

reducing classification bias. These improvements

will further strengthen PWA-based AI

deployment as a sustainable, inclusive solution

for environmental education and waste

management practice.

REFERENCE

[1] B. Fang et al., “Artificial intelligence for waste

management in smart cities: a review,” Aug. 01,
2023, Springer Science and Business Media

Deutschland GmbH. doi: 10.1007/s10311-023-

01604-3.
[2] D. Ziouzios, N. Baras, V. Balafas, M. Dasygenis,

and A. Stimoniaris, “Intelligent and Real-Time

Detection and Classification Algorithm for

Recycled Materials Using Convolutional Neural

Networks,” Recycling, vol. 7, no. 1, Feb. 2022, doi:

10.3390/recycling7010009.
[3] M. Nahiduzzaman et al., “An automated waste

classification system using deep learning

techniques: Toward efficient waste recycling and
environmental sustainability,” Knowl Based Syst,

vol. 310, Feb. 2025, doi:

10.1016/j.knosys.2025.113028.
[4] F. R. Sayem et al., “Enhancing waste sorting and

recycling efficiency: robust deep learning-based

approach for classification and detection,” Neural
Comput Appl, Feb. 2024, doi: 10.1007/s00521-024-

10855-2.

[5] A. Arishi, “Real-Time Household Waste Detection
and Classification for Sustainable Recycling: A

Deep Learning Approach,” Sustainability

(Switzerland), vol. 17, no. 5, Mar. 2025, doi:
10.3390/su17051902.

[6] G. White, C. Cabrera, A. Palade, F. Li, and S.

Clarke, “WasteNet: Waste Classification at the
Edge for Smart Bins,” Jun. 2020, [Online].

Available: http://arxiv.org/abs/2006.05873

[7] M. I. B. Ahmed et al., “Deep Learning Approach to
Recyclable Products Classification: Towards

Sustainable Waste Management,” Sustainability

(Switzerland), vol. 15, no. 14, Jul. 2023, doi:
10.3390/su151411138.

[8] L. Yong, L. Ma, D. Sun, and L. Du, “Application of

MobileNetV2 to waste classification,” PLoS One,
vol. 18, no. 3 March, Mar. 2023, doi:

10.1371/journal.pone.0282336.
[9] H. Zheng and Y. Gu, “Encnn-upmws: Waste

classification by a CNN ensemble using the UPM

weighting strategy,” Electronics (Switzerland), vol.
10, no. 4, pp. 1–21, Feb. 2021, doi:

10.3390/electronics10040427.

[10] L. Stephen Pieters, “DEVELOPMENT OF

AUTOMATIC WASTE CLASSIFICATION

SYSTEM USING CNN BASED DEEP

LEARNING TO SUPPORT SMART WASTE
MANAGEMENT PENGEMBANGAN SISTEM

KLASIFIKASI SAMPAH OTOMATIS

MENGGUNAKAN DEEP LEARNING
BERBASIS CNN UNTUK MENDUKUNG

SMART WASTE MANAGEMENT,” vol. 10, no.

1, p. 2025.
[11] A. Gaurav et al., “Smart waste classification in IoT-

enabled smart cities using VGG16 and Cat Swarm

Optimized random forest,” PLoS One, vol. 20, no. 2
February, Feb. 2025, doi:

10.1371/journal.pone.0316930.

[12] J. D. Ortiz-Mata, X. J. Oleas-Vélez, N. A. Valencia-
Castillo, M. del R. Villamar-Aveiga, and D. E.

Dáger-López, “Comparison of Vertex AI and

Convolutional Neural Networks for Automatic

Waste Sorting,” Sustainability (Switzerland), vol.

17, no. 4, Feb. 2025, doi: 10.3390/su17041481.

[13] C. Shi, C. Tan, T. Wang, and L. Wang, “A waste
classification method based on a multilayer hybrid

convolution neural network,” Applied Sciences

(Switzerland), vol. 11, no. 18, Sep. 2021, doi:
10.3390/app11188572.

[14] Z. Md, A. Amin, N. Sami, and R. Hassan, “An

Approach of Classifying Waste Using Transfer
Learning Method,” 2021.

[15] W. Qiu, C. Xie, and J. Huang, “An improved

EfficientNetV2 for garbage classification,” Mar.
2025, [Online]. Available:

http://arxiv.org/abs/2503.21208

[16] X. Li and R. Grammenos, “A Smart Recycling Bin
Using Waste Image Classification At The Edge,”

Oct. 2022, [Online]. Available:

http://arxiv.org/abs/2210.00448
[17] D. Smilkov et al., “TENSORFLOW.JS: MACHINE

LEARNING FOR THE WEB AND BEYOND,”

2019.
[18] N. C. A. Sallang, M. T. Islam, M. S. Islam, and H.

Arshad, “A CNN-Based Smart Waste Management

System Using TensorFlow Lite and LoRa-GPS
Shield in Internet of Things Environment,” IEEE

Access, vol. 9, pp. 153560–153574, 2021, doi:
10.1109/ACCESS.2021.3128314.

[19] I. Fanani and R. Rianto, "Improving Online Exam

Verification with Class-Weighted and Augmented
CNN Models," Jurnal Teknologi Informasi dan

Terapan (J-TIT), vol. 11, no. 2, pp. 91-98, 2024.

[20] F. Ramadhani et al., "Klasifikasi Suara Paru Normal
Dan Abnormal Berbasis Algoritma CNN

(Convolutional Neural Network)," Jurnal Teknologi

Informasi dan Terapan (J-TIT), vol. 11, no. 1, pp.
15-20, 2024.

EKA SETYABUDI is currently an

undergraduate student in the

Informatics Department at the

Universitas PGRI Semarang,

Semarang, Indonesia. He is in

the seventh semester of the

bachelor program. His research

interests primarily include

machine learning, data mining, and the application

of artificial intelligence in various fields. He can be

contacted at email: 22670144@upgris.ac.id

NOORA QOTRUN NADA is a

Lecturer in the Informatics

Study Program and currently

serves as the Secretary of the

Program Study at the

Universitas PGRI Semarang,

Semarang, Indonesia. She

obtained her Bachelor of

Engineering (S.T.) and Master

of Engineering (M.Eng.) degrees. Her primary

research interests include software engineering,

information systems, and the application of

technology in education. She can be contacted at

email: noora@upgris.ac.id

mailto:22670144@upgris.ac.id
mailto:noora@upgris.ac.id

Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 12 No. 2 Tahun 2025 ISSN: 2580-2291

113
© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MEGA NOVITA is an Associate

Professor in the Informatics

Study Program at the

Universitas PGRI Semarang,

Semarang, Indonesia. She

obtained the S.Si. degree in

mathematics from Satya

Wacana Christian University

(UKSW) in 2009, and the M.Si.

degree in biology from UKSW in 2011. She later

received the M.Nat.Sc. degree in chemistry from

Kwansei Gakuin University (KGU), Japan, in

2012, and earned the Doctor of Science (Dr.Sc.)

degree from the same university in 2015. Her

interdisciplinary research background focuses on

computational science, theoretical investigation of

electronic structures, and data analysis, particularly

their application in materials science and

computational modeling. She also conducted

postdoctoral research at Chonbuk National

University (CBNU), South Korea. She can be

contacted at email: mega@upgris.ac.id

mailto:mega@upgris.ac.id

Eka Setyabudi: CNN Implementation in Progressive Web App for Automatic Garbage
Classification using TensorFlow.js

114
© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

