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ABSTRACT Sugarcane is one of Indonesia’s strategic crops, yet its productivity is frequently 

disrupted by leaf diseases such as yellow leaf, rust, and red rot. Previous studies have shown that 

deep learning models are promising for plant disease detection, but many of them rely on heavy 

architectures that limit deployment in real-world agricultural settings. To address this gap, this study 

applies MobileNetV2, a lightweight Convolutional Neural Network, for the classification of 

sugarcane leaf diseases. Using the publicly available Kaggle dataset, the model was trained and 

evaluated on four classes: healthy, yellow leaf, rust, and red rot. The results demonstrate that 

MobileNetV2 achieved 97.0% test accuracy, with strong precision, recall, and F1-scores across all 

categories. These findings highlight that efficient deep learning architectures can deliver reliable 

disease classification while remaining practical for implementation on mobile or edge devices. 

Compared with previous approaches, this study contributes by demonstrating that lightweight 

model like MobileNetV2 can provide a balance of accuracy and efficiency, making them suitable 

for supporting precision agriculture practices in resource-limited environments. 
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I.INTRODUCTION  

Indonesia is one of the countries with the 

highest domestic sugar consumption, reaching more 

than 6.6 million tons per year [1]. However, national 

sugar production has not been able to meet this 

demand optimally, making Indonesia one of the 

largest importers of raw sugar in the world [2]. This 

situation highlights the urgent need to improve the 

efficiency of domestic sugarcane production as the 

primary commodity of the national sugar industry. 

One of the major challenges in sugarcane 

cultivation is the productivity loss caused by leaf 

diseases such as rust, and red rot leaf [3]. Diseases 

significantly affect both the quality and quantity of 

harvested crops. Early detection is difficult for 

untrained farmers because symptoms are often 

subtle in the initial stages, Conventional inspection 

is subjective, time-consuming, and heavily 

dependent on personal expertise [4]. 

Artificial intelligence (AI) and digital image 

processing have emerged as promising solutions in 

precision agriculture. Convolutional Neural 

Networks (CNNs) have been successfully applied to 

disease classification in various crops such as maize 

[5], mango [6], chili [7], potato [8], rice [9], and 

tomato [10]. Several deep CNN architectures, such 

as ResNet [11] and VGGNet [12] have achieved 

high accuracy. However, their substantial 

computational requirements limit applicability in 

real agricultural environments. 

To overcome these limitations, recent studies 

have explored lightweight CNN architectures such 

as MobileNetV2 [13], EfficientNet [14], ShuffleNet 

[15], and SqueezeNet [16]. MobileNetV2 has been 

successfully applied in plant disease detection tasks, 

providing competitive accuracy while reducing 

computational complexity. Compared with deeper 

architectures such as ResNet-50 [17] and VGG-16 

[18], MobileNetV2 provides a better trade-off 

between accuracy and efficiency [19]. Recent 

studies in the medical imaging domain have shown 

that modern CNN architectures like EfficientNetB3 

can outperform heavier models such as VGG16, 

achieving 93% accuracy while using significantly 
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fewer parameters, making them suitable for 

resource-constrained deployment [20]. This 

highlights the growing relevance of lightweight 

CNNs across domains. However, systematic 

exploration of MobileNetV2 for sugarcane leaf 

disease classification remains limited, motivating 

this study. 

Previous studies have applied CNN 

architectures for sugarcane leaf disease 

classification using VGG16-based transfer learning 

models [21] and MobileNetV2 fine-tuning 

approaches [22]. However, most of these studies 

focused only on improving accuracy without 

considering computational efficiency or hardware 

feasibility. This study proposes a lightweight 

MobileNetV2 model with multi-phase fine-tuning 

and data augmentation across four disease classes, 

emphasizing a balance between accuracy and 

efficiency for real-time agricultural implementation. 

Although previous works have utilized CNN 

architectures such as VGG16 and MobileNetV2 for 

sugarcane leaf disease classification, this study does 

not replicate those models directly. Instead, it 

enhances the MobileNetV2 architecture through 

multi phase fine tuning, adaptive learning rate 

scheduling, and dropout-regularized dense layers to 

achieve a balanced performance between accuracy 

and computational efficiency. This improvement 

makes the proposed model more lightweight and 

suitable for real-time agricultural monitoring on 

limited hardware devices. 

This study aims to develop a sugarcane leaf 

disease classification model using the MobileNetV2 

architecture and evaluate its performance using 

accuracy, precision, and recall metrics. The 

proposed model is designed to achieve high 

classification accuracy while maintaining 

computational efficiency, making it suitable for real-

time applications in agricultural fields. 

The main contributions of this research are 

twofold. First, it demonstrates the effectiveness of 

MobileNetV2 for sugarcane leaf disease 

classification with high accuracy and efficiency. 

Second, it deploys the trained model as a user 

friendly web application using Streamlit for realtime 

predictions. This approach enhances the 

applicability of academic research in practical 

agricultural settings, supporting precision 

agriculture and contributing to improved sugarcane 

productivity in Indonesia. 

 

II.METHOD  

This research is designed as an experimental 

study with a quantitative approach, aiming to 

systematically develop, train, and evaluate a deep 

learning model for sugarcane leaf disease 

classification with high accuracy. The study adopts 

a transfer learning approach, where pretrained 

knowledge from dataset is leveraged to perform a 

more specific classification task. The backbone 

architecture selected is MobileNetV2, a lightweight 

Convolutional Neural Network (CNN) known for its 

strong feature extraction capability while 

maintaining computational efficiency. This makes it 

suitable for deployment in real-world agricultural 

applications and low-resource environments such as 

mobile or IoT devices. 

MobileNetV2 introduces inverted residuals 

and linear bottlenecks that significantly reduce 

computational complexity while preserving 

classification performance. Recent research [23] 

demonstrated that an improved MobileNetV2 model 

achieved over 99% accuracy on crop disease 

classification tasks, while reducing parameters by 

59% and increasing inference speed, highlighting its 

suitability for edge computing and precision 

agriculture applications. 

The overall research workflow is structured 

sequentially to ensure systematic implementation. 

The main stages include dataset acquisition, 

preprocessing, model construction using 

MobileNetV2, training and validation, evaluation 

using unseen test data, and preparation for 

deployment. This structured design ensures that the 

resulting model is not only accurate but also robust 

and scalable. The research flow diagram is presented 

in Figure 1 to visually illustrate the end-to-end 

process from data collection to system readiness. 

 

 
FIGURE 1.  Workflow of sugarcane disease classification 

using MobileNetV2 

In Figure 1, the research workflow begins 

with data acquisition, where images of sugarcane 

leaves are collected from the publicly available 

“Sugarcane Leaf Disease Dataset (DTM1Kv1)” on 

Kaggle. The dataset includes four categories: 

healthy, yellow leaf, rust, and red rot. Images vary 

in resolution (640×480 to 1024×768 pixels) and 

were captured under natural conditions, ensuring 

diversity in background, illumination, and 

orientation. 

The second stage is data preprocessing, 

which involves three main steps. First, data 
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distribution is carried out by splitting the dataset into 

training, validation and testing subsets, with an 

70:10:20 ratio to ensure objective evaluation. 

Second, data augmentation and preprocessing 

techniques including normalization, resizing, 

rotation, and flipping, are applied to address class 

imbalance and improve generalization. Third, the 

dataset is standardized to consistent input 

dimensions suitable for the MobileNetV2 model. 

The third stage is modelling, which consists 

of three processes. Model development employs 

MobileNetV2 as the backbone CNN architecture, 

chosen for its balance between accuracy and 

computational efficiency. Model training is 

performed on the training dataset using transfer 

learning and fine-tuning strategies. Afterward, 

model evaluation is conducted on the independent 

test set using accuracy, precision, recall, and F1 

Score metrics to assess performance. 

Finally, the trained model proceeds to the 

deployment stage, where it is integrated into a user  

friendly web application using Streamlit. This step 

enables real-time predictions and demonstrates the 

practical applicability of the model for supporting 

precision agriculture in sugarcane cultivation. 

TABLE 1. Distribution of Sugarcane Leaf Disease Dataset   

Class Training Testing 

Healthy 246 61 

 
Yellow 

 
80 

 

 
20 

Rust 236 59 

 

Red Rot 

 

242 

 

60 
 

Total 

 

804 

 

200 

Tables 1 and 2 summarize the class 

distribution before and after augmentation, showing 

that the dataset became balanced after applying 

augmentation techniques.  

 
TABLE 2. Balanced Dataset Distribution after Splitting 

Class Training Validation Testing 

Healthy 246 49 61 

 
Yellow 

 
80 

 

 
16 20 

Rust 236 47 59 
 

Red Rot 

 

242 

 

48 60 

 

Total 

 

804 

 

160 200 

To mitigate this imbalance, augmentation 

techniques were applied primarily to the minority 

classes After augmentation, both the training and 

validation subsets became balanced, with each class 

represented by an equal number of samples (218 per 

class). This adjustment ensured that the model could 

learn representative features from each disease 

category without being biased toward the majority 

class. 

Each image is resized to 224x224 pixels to 

match the MobileNetV2 input layer, and pixel 

intensities are normalized to the [0,1] range to 

reduce scale variations. Data augmentation includes 

rotation (25°), horizontal and vertical flipping, 

zooming up to 30%, random shifting between 0.1–

0.3 of image dimensions, and brightness adjustments 

to simulate different lighting conditions. This 

approach improves the dataset's effective size and 

enhances model generalization. 

 

 
 
FIGURE 2.  Sample Images From Dataset 

Several representative images from the 

dataset are shown in Figure 2, which shows the 

typical visual patterns of each class, such as color 

changes, shapes, and texture variations. These 

differences confirm that image-based classification 

approaches are well suited for early detection of 

sugarcane leaf diseases. This dataset is also highly 

compatible for use with lightweight deep learning 

architectures such as MobileNetV2, which requires 

good quality data and adequate class distribution to 

achieve optimal classification performance with 

high computational efficiency. 

All data is organized in separate directories 

for the training set and testing set to facilitate 

retrieval in the Python 3.10 based TensorFlow 

training pipeline. The pre-processing stage is 

performed using OpenCV and the 

ImageDataGenerator module in TensorFlow 2.12. 

The training process is accelerated using an 

dedicated GPU to handle the computational load of 

augmentation and deep learning training. With 

systematic acquisition and pre-processing stages, the 

dataset becomes consistent, representative, and 

ready to be used to build an optimal MobileNetV2 

based classification model. 

With the preprocessed and augmented 

dataset ready, the next crucial step was selecting an 

appropriate deep learning architecture that could 

efficiently process the image data while maintaining 

high performance. This research development model 

adopts the MobileNetV2 architecture as the core 

(backbone) CNN due to its optimal balance between 

classification performance and computational 

efficiency. Previous studies [24] have shown that the 

enhanced version of MobileNetV2, integrated with 

an attention mechanism and pruning strategy, 

achieved an accuracy of approximately 98.4% on 

rice leaf disease classification while reducing the 

number of parameters by about 15.37% compared to 
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the original MobileNetV2 architecture. These 

findings demonstrate the potential of MobileNetV2 

not only in maintaining high classification accuracy 

but also in ensuring efficiency for deployment in 

resource-constrained environments. In the study 

conducted on rice leaf disease classification, 

MobileNetV2 achieved 97.04% accuracy in 

recognizing diseases such as bacterial blight and 

blast, demonstrating its superiority in simple 

computing systems such as microcontrollers. With 

this empirical support, MobileNetV2 has proven to 

be very suitable as a foundation for sugarcane leaf 

disease classification, especially when the model 

needs to be run on devices with limited resources. 

 

 
 

FIGURE 3.  MobileNetV2 Architecture 

Figure 3 shows the MobileNetV2 

architecture framework used in this study as the 

main backbone. This architecture consists of 

inverted residual blocks with linear bottlenecks 

designed to preserve important information during 

the feature extraction process. The initial layers 

extract basic visual features from sugarcane leaf 

images, while the middle layers process more 

complex spatial representations. In the final stage, 

the extracted features are passed to a fully connected 

layer that classifies them into four disease categories 

[25]. 

This research adopts MobileNetV2 as the 

backbone CNN architecture due to its efficiency in 

balancing accuracy and computational cost. 

MobileNetV2 employs inverted residuals and linear 

bottlenecks [26], making it highly suitable for 

deployment in mobile or IoT environments. In this 

study, transfer learning was applied by fine-tuning 

the last 100 layers of the pretrained MobileNetV2 

model to classify four categories of sugarcane leaf 

diseases. 

The advantages of this architecture have also 

been proven effective in plant disease classification. 

For example, [27] developed Fruit classification 

using attention-based MobileNetV2 for industrial 

applications. This model achieved high accuracy 

performance, demonstrating that the addition of an 

attention mechanism can further strengthen the 

classification capabilities of MobileNetv2 without 

reducing its efficiency. 

In this study, the transfer learning approach 

was applied by loading the MobileNetV2 model that 

had been trained on ImageNet as a starting point, 

then adjusting the final layer to classify four 

categories of sugarcane leaf diseases. The model 

configuration included the use of ReLU as internal 

activation, Softmax in the output layer, and the 

Adam optimizer with an initial learning rate of 

0.0001 and a categorical cross-entropy loss function. 

To mitigate overfitting, a dropout technique of 0.5 

was used on the fully connected layer, as well as the 

ReduceLROnPlateau callback to adaptively adjust 

the learning rate. These steps ensure that the model 

is not only highly accurate in terms of metrics, but 

also stable and ready to be implemented in a field 

detection system. 

After the dataset was preprocessed and 

augmented, the training process was carried out 

using the MobileNetV2 architecture with transfer 

learning. To optimize the training process and 

prevent overfitting, model was trained with a batch 

size of 32 and an initial 30 epochs for feature 

extraction, followed by an additional 20 fine-tuning 

epochs, resulting in a total of 50 training epochs. 

Several GPU callback mechanisms are 

implemented, such as ReduceLROnPlateau, 

EarlyStopping, and ModelCheckpoint. This strategy 

is consistent with practices reported in recent rice 

disease classification studies, where callbacks are 

used to monitor validation metrics in real time and 

maintain model stability during training, while 

ReduceLROnPlateau is used to automatically reduce 

the learning rate when validation loss stagnates. 

EarlyStopping to stop training when no further 

improvement is observed within ten epochs, and 

ModelCheckpoint to save the best-performing model 

during training. These mechanisms ensure that the 

model converges efficiently without excessive 

computational costs [28]. 

TABLE 3. Hyperparameter settings used in this experiment   

Hyperparameter Quantity 

Input image size  224 × 224 × 3 

 
Batch Size 32 

 

Initial learning 
rate 

0.001 (phase 1), 
0.00005(tuning) 

 

Optimizer Adam 

Loss Function Categorical Crossentropy (with label 

smoothing 0.1 in experiment 2) 

Epoch 30 (initial) + 20 (fine-tuning) 

Dropout 0.5 (dense-1), 0.4 (dense-2) 

Regularization L2 (1e-4) 
Fine Tuned 

Layers 

Last 100 layers MobileNetV2 

Callbacks EarlyStopping, ReduceLROnPlateau, 
ModelCheckpoint 

Hardware 

Environment 

Dedicated GPU (AMD Radeon 

Graphics), 16 GB RAM, Python 3.10, 
TensorFlow 2.12 

The hyperparameter configuration in Table 3 

was designed to balance accuracy and computational 

efficiency during both training and fine-tuning 

phases.  

This hyperparameter configuration aims to 

achieve a balance between classification accuracy 
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and computational efficiency. A batch size of 32 was 

chosen because it provides gradient stability while 

maximizing GPU utilization. Two phase training 

was performed, starting with feature extraction with 

frozen layers and continuing with fine-tuning on the 

last 100 layers to improve specialization for 

sugarcane leaf images. The use of dropout (0.5 and 

0.4) and L2 regularization proved effective in 

preventing overfitting on limited datasets. 

Model performance evaluation is conducted 

using a confusion matrix to measure classification 

effectiveness across four classes). For example, in 

the task of potato leaf disease detection, these 

metrics are used comprehensively to measure 

overall model performance [29]. In multi class 

classification, the confusion matrix is analyzed 

using the One-vs-Rest approach, where each class is 

considered a positive class while the other classes 

are considered negative classes. This technique is 

also used in attention-based Vision Transformer 

research, which demonstrates the models ability to 

handle inter class variations robustly [30]. Based on 

this, the metrics of accuracy, precision, recall, and 

F1 Score were calculated using the following 

equations: 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 × 100% (1) 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 × 100% (2) 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 × 100% (3) 

 

F1 Score =
2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 × 100% (4) 

 

Here, TP (True Positive), TN (True 

Negative), FP (False Positive), and FN (False 

Negative) are defined for each class using the One-

vs-Rest strategy. The final results were reported 

using both macro-averaging, which treats all classes 

equally, and weighted-averaging, which considers 

the imbalance in dataset distribution. This approach 

ensures that evaluation reflects both the per-class 

performance and the overall robustness of the model 

across imbalanced categories [31]. 

 

III.RESULT AND DISCUSSION 

The distribution of data in the sugarcane leaf 

dataset used in this study shows an imbalance. The 

healthy class has the most images, namely 307 

images, while the yellow class only has 100 images. 

Meanwhile, the rust and red rot consist of 295 and 

302 images, respectively. This imbalance has the 

potential to cause bias in the classification model, 

because neural networks tend to recognize the 

majority class more easily than the minority class. 

The subsequent impact is a decrease in classification 

performance, especially in classes with limited data.  

This imbalance was addressed through 

augmentation techniques to ensure fair 

representation of each class during training. This 

condition is in line with similar studies which state 

that unbalanced data distribution can reduce the 

sensitivity of the model to minority classes in plant 

disease classification [32]. Similar findings were 

also reported in another study, where the proposed 

method significantly ameliorates the classification 

of heartbeats, effectively addressing the class 

imbalance issue prevalent in ECG data [33]. 

 

A. Training data and augmentation results 

To solve various these issues, image 

augmentation was performed on the minority class 

using ImageDataGenerator in TensorFlow. The 

augmentation process produced new image 

variations without changing the main features of the 

disease, thereby balancing the amount of data and 

enriching the visual representation. The applied 

augmentation techniques and their respective 

parameters are summarized in Table 4. 

 
TABLE 4. Augmentation Techniques and Parameters   

Augmentation 

Technique 
Parameter Purpose 

Brightness 

Adjustment 

brightness_ran

ge=[0.6, 1.4] 

To simulate natural 

lighting variations in 
the field, from dim to 

bright conditions. 

Height & 
Width Shift 

height_shift_r
ange=0.3 

To Vertically and 
horizontally shift the 

object position so the 

model is not sensitive 

to leaf placement. 

Horizontal Flip horizontal_flip

=True 

Flip the image 

horizontally, 
increasing variability 

in leaf orientation. 

Rotation rotation_range
=25 

Randomly rotate the 
image (up to ±25°) to 

simulate variations in 

leaf direction.. 
Shear 

Transformation 

shear_range=0

.2 

To apply angular 

distortion on the 

image, thereby 
increasing shape 

variations of the 

leaves. 
Zoom zoom_range=

0.3 

Zoom in or out up to 

30%, mimicking 

different image capture 
distances 

            As summarized in Table 4, the applied 

augmentation techniques effectively increased 

dataset diversity while preserving key disease 

characteristics. To illustrate the impact of these 

transformations, representative augmented images 

are shown in Figure 4. 
      Brightness       Zooming     Flipping 

   
       Rotation         Shear                   Width Shift 
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FIGURE 4. Augmentation Results 

The visualization of the augmentation results 

is shown in Figure 4, This image clearly illustrates 

how augmentation produces variations that retain 

the characteristics of the disease on the leaves, so 

that visual features such as discoloration, spots, and 

tissue damage can still be studied by the model. 

 

B. Training and Validation Performance 

The training of the MobileNetV2 model in 

this study was carried out using a two-stage strategy, 

namely feature extraction and fine-tuning. In the 

first stage, the pretrained MobileNetV2 weights 

from the ImageNet dataset were frozen, and only the 

additional fully connected layers were trained. This 

ensured that the model could leverage the general 

visual features already learned by MobileNetV2 

while adapting to the specific sugarcane leaf dataset. 

In the second stage, the last 100 layers of 

MobileNetV2 were unfrozen, allowing more 

domain-specific features to be learned while still 

preserving the benefits of pretrained representations.  

The training process was configured as 

shown in Table 5, where an initial learning rate of 

0.001 was used for feature extraction, followed by 

0.00005 during fine-tuning. The model was trained 

with a batch size of 32 over a maximum of 50 

epochs, but the EarlyStopping mechanism halted 

training at the 47th epoch. 

TABLE 5. Training Configuration of MobileNetV2 Model 

Parameter Value 

Epochs (max) 50 (30 feature extraction + 20 

fine-tuning) 

Effective Epochs 44 (stopped early) 
Batch Size 32 

Initial Learning Rate 0.001 (feature extraction) 

Fine-tuning Learning 
Rate 

0.00005 

EarlyStopping Patience 10 epochs 

ReduceLROnPlateau Factor 0.5, patience 5, min lr 
1e-5 

Optimizer Adam 

Loss Function Categorical Crossentropy 

During training, the metrics evaluated were 

accuracy and loss on both the training and validation 

sets. As shown in Figure 5. 

 
FIGURE 5. Training Validation Accuracy & Loss Curves 

To provide a more detailed insight into 

training dynamics, a quantitative analysis was 

conducted. During the feature extraction stage 

(epochs 1–30), the model achieved an average 

training accuracy of 92.7% and validation accuracy 

of 82.4%, with a validation loss of 0.55. In the fine-

tuning stage, where the last 100 layers were 

unfrozen, validation accuracy improved further to 

82.4% with a corresponding loss of 0.33, 

representing a 2.4% relative improvement compared 

to the initial stage. Across the entire training process, 

the average training accuracy was 97.04%, while the 

validation accuracy averaged 86.6%, with a standard 

deviation of 1.8%, showing stable convergence. The 

persistent 11 up to 12% gap between training and 

validation accuracy reflects a moderate 

generalization gap, which is common in plant 

disease detection tasks due to intra-class variability 

in field data. 

The effectiveness of the training process was 

also supported by the applied callback mechanisms. 

The ReduceLROnPlateau callback reduced the 

learning rate from 0.001 to 0.0005 at epoch 14, and 

further to 0.00025 at epoch 26, which enabled 

smoother convergence. The EarlyStopping callback 

was activated at epoch 47, slightly before the 

planned 50 epochs, preventing overfitting while 

preserving optimal performance. Simultaneously, 

the ModelCheckpoint callback ensured that the best 

weights (val_accuracy = 86.6%, val_loss = 0.45) 

were stored for deployment. These strategies 

collectively enhanced training efficiency and 

safeguarded against performance degradation. The 

optimization process followed the categorical cross-

entropy loss function, formulated as: 

𝐿 = −
1

𝑁
 ∑ ∑ 𝑦𝑖,𝑐

𝐶

𝑐=1

𝑁

𝑖=1

∙ log(𝑦̂𝑖,𝑐) (5) 

Where 𝑁 is the number of samples, 𝑦𝑖,𝑐 

denotes the true label indicator for class 𝐶, and 𝑦̂𝑖,𝑐 

is the predicted probability. This loss penalizes 

highly confident but incorrect predictions more 

strongly, encouraging the network to align 

predictions with the ground truth. The adaptive 

learning rate schedule implemented through 

ReduceLROnPlateau can be expressed as: 

 

𝜂𝑡+1 =  {
𝜂𝑡 × 𝛾,

𝜂𝑡,
 (6) 

Here, 𝜂𝑡 represents the learning rate at epoch 

𝜏, and 𝛾 is the decay factor (0.5 in this study). The 

update is applied only when the validation loss does 

not improve for 𝑝 = 5 consecutive epochs, 

otherwise the learning rate remains unchanged. with 

𝛾 = 0.5 and 𝑝 = 5. This mechanism dynamically 

refined weight updates, ensuring the optimizer did 

not overshoot local minimum during convergence.  

A summary of training metrics across 

different epochs is provided in Table 6. From Table 

5, it is evident that the most significant performance 

gain occurred between epochs 30, coinciding with 
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the second learning rate reduction. Beyond epoch 

30, the improvements were incremental yet stable, 

culminating at epoch 47 when EarlyStopping halted 

the training. This confirms that the learning rate 

schedule and callbacks effectively guided the 

optimization process, resulting in a balanced and 

reliable model for sugarcane leaf disease 

classification. 

 
TABLE 6. Training Validation Metrics at Key Epochs 

Epoch Accuracy (Train/Val) Loss (Train/Val) 

10 72.3 / 65.8 0.84 / 0.92 

20 85.6 / 78.1 0.55 / 0.68 

30 92.7 / 82.4 0.33 / 0.55 

40 96.8 / 84.9 0.18 / 0.48 

47 97.4 / 86.6 0.15 / 0.45 

Table 5 provides a detailed summary of the 

training and validation metrics across selected 

epochs, illustrating how the model progressively 

improved during the training process. At epoch 10, 

training accuracy was only 72.3% and validation 

accuracy 65%, reflecting the early stage of feature 

learning where the network primarily extracted low-

level representations such as edges and textures. By 

epoch 20, validation accuracy rose to 78.1% with 

validation loss decreasing to 0.68, showing that the 

pretrained weights of MobileNetV2 effectively 

transferred general knowledge from ImageNet to the 

sugarcane dataset. The most notable improvement 

occurred at epoch 30, where validation accuracy 

reached 82.4% and validation loss dropped sharply 

to 0.55, coinciding with the adaptive learning rate 

reduction triggered by the ReduceLROnPlateau 

callback. This demonstrates that carefully tuning the 

learning rate schedule is essential for achieving 

stable convergence in transfer learning scenarios. 

The performance continued to improve 

modestly after epoch 30, stabilizing around 84–85% 

validation accuracy. At epoch 40, the model 

achieved 84.9% validation accuracy with validation 

loss further reduced to 0.48, while training accuracy 

reached 96.8%. Although this indicates strong 

learning capability, the widening gap between 

training and validation results suggests a potential 

risk of overfitting. Fortunately, the application of 

regularization strategies such as dropout layers and 

the EarlyStopping callback mitigated this issue. 

Training was halted at epoch 47, slightly before the 

maximum planned epochs, at which point the model 

attained its best validation accuracy of 86.6% with 

validation loss of 0.45. The ModelCheckpoint 

mechanism ensured that these optimal weights were 

preserved, forming the final deployed model for 

evaluation. 

Overall, the analysis of training and 

validation performance confirms that the integration 

of transfer learning, fine tuning, and adaptive 

callbacks yielded a MobileNetV2 based model that 

was both accurate and efficient. The results highlight 

the importance of combining quantitative 

monitoring with systematic optimization strategies 

to balance accuracy and generalization. Having 

demonstrated effective convergence during training, 

the next section extends the evaluation to 

independent test data, including class wise analysis, 

to further validate the robustness of the proposed 

approach. 

 

C. Model Evaluation 

The testing was conducted using test data that 

the model had never seen before. The test data 

consisted of 200 images with four main classes, 

namely Healthy, Yellow, Rust, and Red Rot. This 

evaluation aimed to assess MobileNetV2's 

generalization ability in dealing with image 

variations in the field. The performance analysis 

included calculations of accuracy, precision, recall, 

F1 Score, and confusion matrix to provide a detailed 

overview of the models prediction distribution for 

each class. This assessment was crucial to validate 

the model's performance quantitatively and 

objectively on independent data, which reflected the 

models performance in real world applications. This 

evaluation focuses not only on aggregate metrics, 

but also on granular analysis per class to understand 

the specific strengths and weaknesses of the model, 

especially given the class imbalance in the dataset 

used. 

The first metric evaluated was overall 

accuracy, which measures the proportion of correct 

predictions out of the total test data. The developed 

model achieved an overall accuracy of 0.974. This 

accuracy calculation is based on the total number of 

correct predictions divided by the total number of 

samples in the test data set. With 200 test images, 

this result means that the model was able to classify 

194 images correctly, while making only 6 errors. 

The calculation is as follows: 

 

Accuracy =
194

200
× 100% = 97.04% (7) 

 

This high level of accuracy provides a strong 

initial indicator that the model has good 

generalization capabilities. These results validate the 

effectiveness of the chosen methodology, including 

the use of the MobileNetV2 architecture, transfer 

learning strategy, and data augmentation techniques 

applied to address dataset imbalance. This success 

demonstrates that the model has successfully learned 

the essential discriminative features to distinguish 

between healthy sugarcane leaves and those infected 

with various types of diseases. 

Although overall accuracy provides a 

positive overview, this metric can be misleading in 

multi class classification problems with imbalanced 

data distribution. For a more in depth analysis, a 

confusion matrix is used as a diagnostic tool to 

dissect the models performance. This matrix not 

only shows how many predictions are correct, but 
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also reveals the nature of the errors made, namely 

which classes are often confused with one another. 

Table 7 presents confusion matrix of model 

prediction results on 200 test images. Rows 

represent the actual class of the image, while 

columns represent the class predicted by the model. 

 

 
TABLE 7. Confusion Matrix on Test Data 

 Predicted Class 

Actual class Healthy Yellow Rust Red Rot 

Healthy 66 1 0 0 

Yellow 1 58 1 0 

Rust 0 1 36 1 

Red Rot 0 0 2 33 

The confusion matrix provides several 

important insights. First, the high values along the 

main diagonal indicate that the model correctly 

classifies the majority of samples in each class, 

confirming its strong overall performance. Second, 

the off-diagonal values highlight areas where the 

model struggles. The most notable error occurs 

between the Rust and Red Rot classes, where 2 Red 

Rot images were misclassified as Rust and 1 Rust 

image was misclassified as Red Rot. This 

misclassification is likely due to the visual similarity 

of their symptoms, such as reddish-brown lesions, 

which makes them more difficult to distinguish. 

From a practical perspective, these errors could lead 

to inappropriate treatments in the field, potentially 

increasing pesticide costs and reducing disease 

control effectiveness. 

Other minor misclassifications include one 

Healthy leaf identified as Yellow, which may be 

explained by lighting variations causing a yellowish 

appearance. Although such errors are relatively rare, 

they illustrate the influence of environmental factors 

on classification accuracy. 

To complement the accuracy metric and 

provide a fair evaluation across both majority and 

minority classes, precision, recall, and F1 Score are 

calculated. Precision reflects how many samples 

predicted as positive are truly positive, recall 

measures the proportion of actual positive cases 

correctly identified, and F1 Score combines both 

into a balanced measure of performance. These 

metrics give a more nuanced evaluation of model 

reliability across classes. 

Here are the calculations for precision and 

recall for each class based on data from the 

confusion matrix on test data: 

Healthy:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
66

66 +  1
= 0.985 (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
66

66 +  1
=  0.985 (9) 

Yellow:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
58

58 +  2
= 0.966 (10) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
58

58 +  2
=  0.966 (11) 

Rust: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
36

36 +  3
= 0.923 (12) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
36

36 +  2
=  0.947 (13) 

Red Rot: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
33

33 +  1
= 0.971 (14) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
33

33 +  2
=  0.943 (15) 

Table 8 summarizes the performance metrics 

per class calculated based on the confusion matrix. 

 
TABLE 8. Performance Metrics per Class 

Class Precision Recall 
F1- 

Score 

Healthy 0.985 0.985 0.985 

Yellow 0.967 0.967 0.967 

Rust 0.923 0.947 0.934 

Red Rot 0.971 0.943 0.957 

Macro Avg 0.962 0.961 0.961 

Weighted Avg 0.966 0.966 0.966 

In depth analysis of these metrics reveals that 

for the Healthy Class, both precision and recall 

reached 0.985, indicating near perfect reliability. 

This balance suggests that the model can correctly 

identify almost all healthy leaves while minimizing 

false positives. For the Yellow Class, the precision 

and recall values are equally strong at 0.967, 

demonstrating the models ability to consistently 

distinguish yellow leaf disease symptoms from other 

conditions. Meanwhile, the metrics for the Rust and 

Red Rot Classes highlight certain challenges. The 

Rust Class shows a lower precision (0.923) but 

relatively higher recall (0.947), meaning the model 

is more likely to capture most rust cases but at the 

cost of misclassifying some non rust samples. 

Conversely, the Red Rot Class achieved high 

precision (0.971) with slightly lower recall (0.943), 

indicating the model is very confident when 

predicting Red Rot, but a few actual cases remain 

undetected. This trade off between precision and 

recall in Rust and Red Rot suggests room for 

refinement, particularly in differentiating visually 

similar disease symptoms. 

Based on the comprehensive evaluation, the 

strengths and limitations of the proposed model can 

be summarized as follows. The strengths include 

high overall performance with a test accuracy of 

97.04%, strong reliability in the Healthy class, and 

cross-class robustness as reflected by consistently 

high F1 Score across all categories, including 

minority classes. These results highlight the 

effectiveness of the data augmentation and training 

strategies employed. The main limitation lies in 

inter-class confusion, particularly between rust and 
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Red Rot diseases, which share visually similar 

symptoms. Additionally, a gap of approximately 11–

12% between training and validation accuracy 

indicates moderate overfitting, although this effect 

was partially mitigated through the use of callbacks. 

The strong performance of the proposed 

model can be attributed to the multi-phase fine 

tuning strategy, which gradually unfreezes deeper 

layers and allows the model to adapt more 

effectively to domain specific features of sugarcane 

leaf diseases. This process helps prevent overfitting 

while maintaining high accuracy, explaining the 

models consistent performance across all classes. 

Moreover, the adaptive learning rate 

scheduling and dropout regularization significantly 

contribute to training stability, particularly under 

conditions of limited dataset variability. These 

findings explain why the model achieves a balanced 

trade off between accuracy and efficiency. 

Beyond the achieved metrics, this result 

indicates that lightweight CNN architectures such as 

MobileNetV2, when optimized through finetuning 

and regularization, can serve as an effective and 

practical framework for other agricultural disease 

detection tasks. This suggests potential scalability 

and real world adaptability of the proposed 

approach, reflecting its broader contribution beyond 

sugarcane leaf classification. 

In comparison with previous research, the 

fine-tuned MobileNetV2 model proposed by [22]  

achieved 95.01% accuracy with higher 

computational cost due to single-phase tuning and 

limited regularization. Similarly, [21] employed a 

CNN-VGG16 model and obtained 98% accuracy but 

with significantly larger parameters, making it less 

efficient for real-time applications. In contrast, the 

proposed model achieves comparable or higher 

accuracy 97.04% while maintaining lightweight 

complexity through multi phase finetuning and 

adaptive regularization, which reduce training time 

and parameter count. This demonstrates that the 

proposed configuration provides a better balance 

between accuracy and efficiency compared to prior 

works. 

As a follow up to the identified limitations, 

several future research directions can be 

recommended to further improve the performance 

and utility of the model. From a data based approach, 

it is recommended to conduct targeted data 

collection for the Rust and Red Rot classes and 

explore further augmentation using Generative 

Adversarial Networks (GANs). From a model based 

improvement perspective, integrating Attention 

Mechanisms into the MobileNetV2 architecture can 

help the model focus on the most discriminative leaf 

areas, while the use of Ensemble Methods can 

improve prediction robustness. Finally, from an 

application-based expansion perspective, the model 

can be expanded to quantify disease severity levels. 

Most importantly, it can be applied and tested in the 

real world on edge devices to validate the model's 

robustness to various field conditions and bridge the 

gap between research and practical application. 

 

IV.CONCLUSION  

This study focused on the development of a 

deep learning-based classification system for 

sugarcane leaf diseases using the MobileNetV2 

architecture, motivated by the urgent need to support 

precision agriculture with computationally efficient 

solutions. Through systematic stages of dataset 

acquisition, preprocessing, augmentation to address 

imbalance, transfer learning, fine-tuning, and 

evaluation, the proposed model achieved an overall 

accuracy of 97.04% with balanced precision, recall, 

and F1-scores across the four classes: Healthy, 

Yellow, Rust, and Red Rot. These results 

demonstrate that MobileNetV2 can serve as an 

effective backbone for agricultural disease 

detection, combining high accuracy with 

computational efficiency suitable for low-resource 

environments. However, this study faced 

limitations, particularly related to the imbalance in 

dataset distribution and the constrained diversity of 

field conditions, which occasionally led to 

misclassifications between visually similar diseases 

such as Rust and Red Rot. Despite these challenges, 

the findings highlight the potential of lightweight 

CNN architectures to deliver robust, scalable, and 

deployable solutions for real-world farming 

practices. Future research should aim to expand the 

dataset with greater inter-class balance, explore 

integration of attention mechanisms or ensemble 

strategies to further enhance classification 

robustness, and implement severity-level estimation 

for more actionable disease management. Future 

validation on field conditions and deployment on 

edge devices will further verify the models practical 

applicability. 
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