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ABSTRACT Sugarcane is one of Indonesia’s strategic crops, yet its productivity is frequently
disrupted by leaf diseases such as yellow leaf, rust, and red rot. Previous studies have shown that
deep learning models are promising for plant disease detection, but many of them rely on heavy
architectures that limit deployment in real-world agricultural settings. To address this gap, this study
applies MobileNetV2, a lightweight Convolutional Neural Network, for the classification of
sugarcane leaf diseases. Using the publicly available Kaggle dataset, the model was trained and
evaluated on four classes: healthy, yellow leaf, rust, and red rot. The results demonstrate that
MobileNetV2 achieved 97.0% test accuracy, with strong precision, recall, and F1-scores across all
categories. These findings highlight that efficient deep learning architectures can deliver reliable
disease classification while remaining practical for implementation on mobile or edge devices.
Compared with previous approaches, this study contributes by demonstrating that lightweight
model like MobileNetV2 can provide a balance of accuracy and efficiency, making them suitable
for supporting precision agriculture practices in resource-limited environments.
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LINTRODUCTION

Indonesia is one of the countries with the
highest domestic sugar consumption, reaching more
than 6.6 million tons per year [1]. However, national
sugar production has not been able to meet this
demand optimally, making Indonesia one of the
largest importers of raw sugar in the world [2]. This
situation highlights the urgent need to improve the
efficiency of domestic sugarcane production as the
primary commodity of the national sugar industry.

One of the major challenges in sugarcane
cultivation is the productivity loss caused by leaf
diseases such as rust, and red rot leaf [3]. Diseases
significantly affect both the quality and quantity of
harvested crops. Early detection is difficult for
untrained farmers because symptoms are often
subtle in the initial stages, Conventional inspection
is subjective, time-consuming, and heavily
dependent on personal expertise [4].

Artificial intelligence (Al) and digital image
processing have emerged as promising solutions in
precision agriculture.  Convolutional Neural

Networks (CNNs) have been successfully applied to
disease classification in various crops such as maize
[5], mango [6], chili [7], potato [8], rice [9], and
tomato [10]. Several deep CNN architectures, such
as ResNet [11] and VGGNet [12] have achieved
high accuracy. However, their substantial
computational requirements limit applicability in
real agricultural environments.

To overcome these limitations, recent studies
have explored lightweight CNN architectures such
as MobileNetV2 [13], EfficientNet [14], ShuffleNet
[15], and SqueezeNet [16]. MobileNetV2 has been
successfully applied in plant disease detection tasks,
providing competitive accuracy while reducing
computational complexity. Compared with deeper
architectures such as ResNet-50 [17] and VGG-16
[18], MobileNetV2 provides a better trade-off
between accuracy and efficiency [19]. Recent
studies in the medical imaging domain have shown
that modern CNN architectures like EfficientNetB3
can outperform heavier models such as VGG16,
achieving 93% accuracy while using significantly
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fewer parameters, making them suitable for
resource-constrained  deployment [20].  This
highlights the growing relevance of lightweight
CNNs across domains. However, systematic
exploration of MobileNetV2 for sugarcane leaf
disease classification remains limited, motivating
this study.

Previous studies have applied CNN
architectures  for  sugarcane leaf  disease
classification using VGG16-based transfer learning
models [21] and MobileNetV2 fine-tuning
approaches [22]. However, most of these studies
focused only on improving accuracy without
considering computational efficiency or hardware
feasibility. This study proposes a lightweight
MobileNetV2 model with multi-phase fine-tuning
and data augmentation across four disease classes,
emphasizing a balance between accuracy and
efficiency for real-time agricultural implementation.

Although previous works have utilized CNN
architectures such as VGG16 and MobileNetV2 for
sugarcane leaf disease classification, this study does
not replicate those models directly. Instead, it
enhances the MobileNetV2 architecture through
multi phase fine tuning, adaptive learning rate
scheduling, and dropout-regularized dense layers to
achieve a balanced performance between accuracy
and computational efficiency. This improvement
makes the proposed model more lightweight and
suitable for real-time agricultural monitoring on
limited hardware devices.

This study aims to develop a sugarcane leaf
disease classification model using the MobileNetV2
architecture and evaluate its performance using
accuracy, precision, and recall metrics. The
proposed model is designed to achieve high
classification  accuracy  while  maintaining
computational efficiency, making it suitable for real-
time applications in agricultural fields.

The main contributions of this research are
twofold. First, it demonstrates the effectiveness of
MobileNetV2  for sugarcane leaf disease
classification with high accuracy and efficiency.
Second, it deploys the trained model as a user
friendly web application using Streamlit for realtime
predictions. This approach enhances the
applicability of academic research in practical
agricultural  settings,  supporting  precision
agriculture and contributing to improved sugarcane
productivity in Indonesia.

ILMETHOD
This research is designed as an experimental
study with a quantitative approach, aiming to
systematically develop, train, and evaluate a deep
learning model for sugarcane leaf disease
classification with high accuracy. The study adopts
a transfer learning approach, where pretrained
knowledge from dataset is leveraged to perform a
more specific classification task. The backbone
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architecture selected is MobileNetV2, a lightweight
Convolutional Neural Network (CNN) known for its
strong feature extraction capability while
maintaining computational efficiency. This makes it
suitable for deployment in real-world agricultural
applications and low-resource environments such as
mobile or IoT devices.

MobileNetV2 introduces inverted residuals
and linear bottlenecks that significantly reduce
computational complexity = while preserving
classification performance. Recent research [23]
demonstrated that an improved MobileNetV2 model
achieved over 99% accuracy on crop disease
classification tasks, while reducing parameters by
59% and increasing inference speed, highlighting its
suitability for edge computing and precision
agriculture applications.

The overall research workflow is structured
sequentially to ensure systematic implementation.
The main stages include dataset acquisition,
preprocessing, model construction  using
MobileNetV2, training and validation, evaluation
using unseen test data, and preparation for
deployment. This structured design ensures that the
resulting model is not only accurate but also robust
and scalable. The research flow diagram is presented
in Figure 1 to visually illustrate the end-to-end
process from data collection to system readiness.

Data Acquisition

B ET

Preprocessing Data Modelling

Data Training &
Validation

Data Distribution

MobileNetv2

Model Training &
Fine Tuning

Data Testing

Model Evaluation

l

Model Deployment

Augmentation &
Preprocessing

FIGURE 1. Workflow of sugarcane disease classification
using MobileNetV2

In Figure 1, the research workflow begins
with data acquisition, where images of sugarcane
leaves are collected from the publicly available
“Sugarcane Leaf Disease Dataset (DTM1Kv1)” on
Kaggle. The dataset includes four -categories:
healthy, yellow leaf, rust, and red rot. Images vary
in resolution (640%x480 to 1024x768 pixels) and
were captured under natural conditions, ensuring
diversity in background, illumination, and
orientation.

The second stage is data preprocessing,
which involves three main steps. First, data
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distribution is carried out by splitting the dataset into
training, validation and testing subsets, with an
70:10:20 ratio to ensure objective evaluation.
Second, data augmentation and preprocessing
techniques including normalization, resizing,
rotation, and flipping, are applied to address class
imbalance and improve generalization. Third, the
dataset is standardized to consistent input
dimensions suitable for the MobileNetV2 model.

The third stage is modelling, which consists
of three processes. Model development employs
MobileNetV2 as the backbone CNN architecture,
chosen for its balance between accuracy and
computational efficiency. Model training is
performed on the training dataset using transfer
learning and fine-tuning strategies. Afterward,
model evaluation is conducted on the independent
test set using accuracy, precision, recall, and F1
Score metrics to assess performance.

Finally, the trained model proceeds to the
deployment stage, where it is integrated into a user
friendly web application using Streamlit. This step
enables real-time predictions and demonstrates the
practical applicability of the model for supporting
precision agriculture in sugarcane cultivation.

TABLE 1. Distribution of Sugarcane Leaf Disease Dataset

Class Training Testing
Healthy 246 61
Yellow 80 20

Rust 236 59
Red Rot 242 60

Total 804 200

Tables 1 and 2 summarize the class
distribution before and after augmentation, showing
that the dataset became balanced after applying
augmentation techniques.

TABLE 2. Balanced Dataset Distribution after Splitting

Class Training Validation Testing
Healthy 246 49 61
Yellow 80 16 20

Rust 236 47 59
Red Rot 242 48 60

Total 804 160 200

To mitigate this imbalance, augmentation
techniques were applied primarily to the minority
classes After augmentation, both the training and
validation subsets became balanced, with each class
represented by an equal number of samples (218 per
class). This adjustment ensured that the model could
learn representative features from each disease
category without being biased toward the majority
class.

Each image is resized to 224x224 pixels to
match the MobileNetV2 input layer, and pixel
intensities are normalized to the [0,1] range to
reduce scale variations. Data augmentation includes
rotation (25°), horizontal and wvertical flipping,
zooming up to 30%, random shifting between 0.1—
0.3 of image dimensions, and brightness adjustments
to simulate different lighting conditions. This
approach improves the dataset's effective size and
enhances model generalization.

FIGURE 2. Sample Images From Dataset

Several representative images from the
dataset are shown in Figure 2, which shows the
typical visual patterns of each class, such as color
changes, shapes, and texture variations. These
differences confirm that image-based classification
approaches are well suited for early detection of
sugarcane leaf diseases. This dataset is also highly
compatible for use with lightweight deep learning
architectures such as MobileNetV2, which requires
good quality data and adequate class distribution to
achieve optimal classification performance with
high computational efficiency.

All data is organized in separate directories
for the training set and testing set to facilitate
retrieval in the Python 3.10 based TensorFlow
training pipeline. The pre-processing stage is
performed using OpenCV and the
ImageDataGenerator module in TensorFlow 2.12.
The training process is accelerated using an
dedicated GPU to handle the computational load of
augmentation and deep learning training. With
systematic acquisition and pre-processing stages, the
dataset becomes consistent, representative, and
ready to be used to build an optimal MobileNetV2
based classification model.

With the preprocessed and augmented
dataset ready, the next crucial step was selecting an
appropriate deep learning architecture that could
efficiently process the image data while maintaining
high performance. This research development model
adopts the MobileNetV2 architecture as the core
(backbone) CNN due to its optimal balance between
classification performance and computational
efficiency. Previous studies [24] have shown that the
enhanced version of MobileNetV2, integrated with
an attention mechanism and pruning strategy,
achieved an accuracy of approximately 98.4% on
rice leaf disease classification while reducing the
number of parameters by about 15.37% compared to
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the original MobileNetV2 architecture. These
findings demonstrate the potential of MobileNetV2
not only in maintaining high classification accuracy
but also in ensuring efficiency for deployment in
resource-constrained environments. In the study
conducted on rice leaf disease classification,
MobileNetV2 achieved 97.04% accuracy in
recognizing diseases such as bacterial blight and
blast, demonstrating its superiority in simple
computing systems such as microcontrollers. With
this empirical support, MobileNetV2 has proven to
be very suitable as a foundation for sugarcane leaf
disease classification, especially when the model
needs to be run on devices with limited resources.

MobileNetV2
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Preprocessing 313 Conv  GlobalAvaragePooling Classifier

FIGURE 3. MobileNetV2 Architecture

Figure 3 shows the MobileNetV2
architecture framework used in this study as the
main backbone. This architecture consists of
inverted residual blocks with linear bottlenecks
designed to preserve important information during
the feature extraction process. The initial layers
extract basic visual features from sugarcane leaf
images, while the middle layers process more
complex spatial representations. In the final stage,
the extracted features are passed to a fully connected
layer that classifies them into four disease categories
[25].

This research adopts MobileNetV2 as the
backbone CNN architecture due to its efficiency in
balancing accuracy and computational cost.
MobileNetV2 employs inverted residuals and linear
bottlenecks [26], making it highly suitable for
deployment in mobile or IoT environments. In this
study, transfer learning was applied by fine-tuning
the last 100 layers of the pretrained MobileNetV2
model to classify four categories of sugarcane leaf
diseases.

The advantages of this architecture have also
been proven effective in plant disease classification.
For example, [27] developed Fruit classification
using attention-based MobileNetV2 for industrial
applications. This model achieved high accuracy
performance, demonstrating that the addition of an
attention mechanism can further strengthen the
classification capabilities of MobileNetv2 without
reducing its efficiency.

In this study, the transfer learning approach
was applied by loading the MobileNetV2 model that
had been trained on ImageNet as a starting point,
then adjusting the final layer to classify four
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categories of sugarcane leaf diseases. The model
configuration included the use of ReLU as internal
activation, Soffmax in the output layer, and the
Adam optimizer with an initial learning rate of
0.0001 and a categorical cross-entropy loss function.
To mitigate overfitting, a dropout technique of 0.5
was used on the fully connected layer, as well as the
ReduceLROnPlateau callback to adaptively adjust
the learning rate. These steps ensure that the model
is not only highly accurate in terms of metrics, but
also stable and ready to be implemented in a field
detection system.

After the dataset was preprocessed and
augmented, the training process was carried out
using the MobileNetV2 architecture with transfer
learning. To optimize the training process and
prevent overfitting, model was trained with a batch
size of 32 and an initial 30 epochs for feature
extraction, followed by an additional 20 fine-tuning
epochs, resulting in a total of 50 training epochs.
Several ~GPU  callback  mechanisms  are
implemented, such as ReduceLROnPlateau,
EarlyStopping, and ModelCheckpoint. This strategy
is consistent with practices reported in recent rice
disease classification studies, where callbacks are
used to monitor validation metrics in real time and
maintain model stability during training, while
ReduceLROnPlateau is used to automatically reduce
the learning rate when validation loss stagnates.
EarlyStopping to stop training when no further
improvement is observed within ten epochs, and
ModelCheckpoint to save the best-performing model
during training. These mechanisms ensure that the
model converges efficiently without excessive
computational costs [28].

TABLE 3. Hyperparameter settings used in this experiment

Hyperparameter Quantity
Input image size 224 X 224 X 3

Batch Size 32

Initial learning 0.001 (phase 1),
rate 0.00005(tuning)

Optimizer Adam

Loss Function Categorical Crossentropy (with label

smoothing 0.1 in experiment 2)

Epoch 30 (initial) + 20 (fine-tuning)

Dropout 0.5 (dense-1), 0.4 (dense-2)

Regularization L2 (le-4)

Fine Tuned Last 100 layers MobileNetV2

Layers

Callbacks EarlyStopping, ReduceLROnPlateau,
ModelCheckpoint

Hardware Dedicated GPU (AMD Radeon

Environment Graphics), 16 GB RAM, Python 3.10,

TensorFlow 2.12

The hyperparameter configuration in Table 3
was designed to balance accuracy and computational
efficiency during both training and fine-tuning
phases.

This hyperparameter configuration aims to
achieve a balance between classification accuracy
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and computational efficiency. A batch size of 32 was
chosen because it provides gradient stability while
maximizing GPU utilization. Two phase training
was performed, starting with feature extraction with
frozen layers and continuing with fine-tuning on the
last 100 layers to improve specialization for
sugarcane leaf images. The use of dropout (0.5 and
0.4) and L2 regularization proved effective in
preventing overfitting on limited datasets.

Model performance evaluation is conducted
using a confusion matrix to measure classification
effectiveness across four classes). For example, in
the task of potato leaf disease detection, these
metrics are used comprehensively to measure
overall model performance [29]. In multi class
classification, the confusion matrix is analyzed
using the One-vs-Rest approach, where each class is
considered a positive class while the other classes
are considered negative classes. This technique is
also used in attention-based Vision Transformer
research, which demonstrates the models ability to
handle inter class variations robustly [30]. Based on
this, the metrics of accuracy, precision, recall, and
F1 Score were calculated using the following
equations:

A = TP+ TN x 100% (1)
MY = TP Y TN + FP+ FN 0
Precision = —+— x 100% )
recision = TP + FP (1]
Recall = — - x 100% 3)
AT TP YN °

2 X Precision X Recall
F1 Score = — X 100% 4
Precision + Recall

Here, TP (True Positive), TN (True
Negative), FP (False Positive), and FN (False
Negative) are defined for each class using the One-
vs-Rest strategy. The final results were reported
using both macro-averaging, which treats all classes
equally, and weighted-averaging, which considers
the imbalance in dataset distribution. This approach
ensures that evaluation reflects both the per-class
performance and the overall robustness of the model
across imbalanced categories [31].

II.RESULT AND DISCUSSION

The distribution of data in the sugarcane leaf
dataset used in this study shows an imbalance. The
healthy class has the most images, namely 307
images, while the yellow class only has 100 images.
Meanwhile, the rust and red rot consist of 295 and
302 images, respectively. This imbalance has the
potential to cause bias in the classification model,
because neural networks tend to recognize the
majority class more easily than the minority class.
The subsequent impact is a decrease in classification
performance, especially in classes with limited data.
This  imbalance  was  addressed  through

augmentation  techniques to  ensure fair
representation of each class during training. This
condition is in line with similar studies which state
that unbalanced data distribution can reduce the
sensitivity of the model to minority classes in plant
disease classification [32]. Similar findings were
also reported in another study, where the proposed
method significantly ameliorates the classification
of heartbeats, effectively addressing the class
imbalance issue prevalent in ECG data [33].

A. Training data and augmentation results

To solve various these issues, image
augmentation was performed on the minority class
using ImageDataGenerator in TensorFlow. The
augmentation process produced new image
variations without changing the main features of the
disease, thereby balancing the amount of data and
enriching the visual representation. The applied
augmentation techniques and their respective
parameters are summarized in Table 4.

TABLE 4. Augmentation Techniques and Parameters

Augmentation

Technique Parameter Purpose
Brightness brightness ran  To simulate natural
Adjustment ge=[0.6, 1.4] lighting variations in
the field, from dim to
bright conditions.
Height & height shift r  To Vertically and
Width Shift ange=0.3 horizontally shift the

object position so the
model is not sensitive
to leaf placement.
Horizontal Flip ~ horizontal_flip  Flip the image
=True horizontally,
increasing variability
in leaf orientation.

Rotation rotation_range  Randomly rotate the
=25 image (up to £25°) to
simulate variations in
leaf direction..
Shear shear range=0  To apply angular

distortion on the
image, thereby

increasing shape
variations of the

Transformation .2

leaves.
Zoom Zoom_range= Zoom in or out up to
0.3 30%, mimicking
different image capture
distances

As summarized in Table 4, the applied
augmentation techniques effectively increased
dataset diversity while preserving key disease
characteristics. To illustrate the impact of these
transformations, representative augmented images

are shown in Figure 4.

Brightness
MF TSR

Flipping
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FIGURE 4. Augmentation Results
The visualization of the augmentation results
is shown in Figure 4, This image clearly illustrates
how augmentation produces variations that retain
the characteristics of the disease on the leaves, so
that visual features such as discoloration, spots, and
tissue damage can still be studied by the model.

B. Training and Validation Performance

The training of the MobileNetV2 model in
this study was carried out using a two-stage strategy,
namely feature extraction and fine-tuning. In the
first stage, the pretrained MobileNetV2 weights
from the ImageNet dataset were frozen, and only the
additional fully connected layers were trained. This
ensured that the model could leverage the general
visual features already learned by MobileNetV2
while adapting to the specific sugarcane leaf dataset.
In the second stage, the last 100 layers of
MobileNetV2 were unfrozen, allowing more
domain-specific features to be learned while still
preserving the benefits of pretrained representations.

The training process was configured as
shown in Table 5, where an initial learning rate of
0.001 was used for feature extraction, followed by
0.00005 during fine-tuning. The model was trained
with a batch size of 32 over a maximum of 50
epochs, but the EarlyStopping mechanism halted
training at the 47th epoch.

TABLE 5. Training Configuration of MobileNetV2 Model

Parameter Value

Epochs (max) 50 (30 feature extraction + 20

fine-tuning)

Effective Epochs 44 (stopped early)

Batch Size 32

Initial Learning Rate 0.001 (feature extraction)

Fine-tuning Learning 0.00005

Rate

EarlyStopping Patience 10 epochs

ReduceLROnPlateau Factor 0.5, patience 5, min Ir
le-5

Optimizer Adam

Loss Function Categorical Crossentropy

During training, the metrics evaluated were
accuracy and loss on both the training and validation
sets. As shown in Figure 5.

Training and Validation Accuracy
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Training and Validation Loss

FIGURE 5. Training Validation Accuracy & Loss Curves
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To provide a more detailed insight into
training dynamics, a quantitative analysis was
conducted. During the feature extraction stage
(epochs 1-30), the model achieved an average
training accuracy of 92.7% and validation accuracy
of 82.4%, with a validation loss of 0.55. In the fine-
tuning stage, where the last 100 layers were
unfrozen, validation accuracy improved further to
82.4% with a corresponding loss of 0.33,
representing a 2.4% relative improvement compared
to the initial stage. Across the entire training process,
the average training accuracy was 97.04%, while the
validation accuracy averaged 86.6%, with a standard
deviation of 1.8%, showing stable convergence. The
persistent 11 up to 12% gap between training and
validation  accuracy reflects a  moderate
generalization gap, which is common in plant
disease detection tasks due to intra-class variability
in field data.

The effectiveness of the training process was
also supported by the applied callback mechanisms.
The ReducelLROnPlateau callback reduced the
learning rate from 0.001 to 0.0005 at epoch 14, and
further to 0.00025 at epoch 26, which enabled
smoother convergence. The EarlyStopping callback
was activated at epoch 47, slightly before the
planned 50 epochs, preventing overfitting while
preserving optimal performance. Simultaneously,
the ModelCheckpoint callback ensured that the best
weights (val accuracy = 86.6%, val loss = 0.45)
were stored for deployment. These strategies
collectively enhanced training efficiency and
safeguarded against performance degradation. The
optimization process followed the categorical cross-
entropy loss function, formulated as:

N C
1 o
L=- N Z Vie* lOg(yi'C) ®)

i=1c=1

Where N is the number of samples, y; .
denotes the true label indicator for class C, and ¥; .
is the predicted probability. This loss penalizes
highly confident but incorrect predictions more
strongly, encouraging the network to align
predictions with the ground truth. The adaptive
learning rate schedule implemented through
ReduceLROnPlateau can be expressed as:

Ne XY,
ne = {70, ©

Here, 1, represents the learning rate at epoch
7, and y is the decay factor (0.5 in this study). The
update is applied only when the validation loss does
not improve for p =05 consecutive epochs,
otherwise the learning rate remains unchanged. with
y= 0.5 and p = 5. This mechanism dynamically
refined weight updates, ensuring the optimizer did
not overshoot local minimum during convergence.

A summary of training metrics across
different epochs is provided in Table 6. From Table
5, it is evident that the most significant performance
gain occurred between epochs 30, coinciding with
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the second learning rate reduction. Beyond epoch
30, the improvements were incremental yet stable,
culminating at epoch 47 when EarlyStopping halted
the training. This confirms that the learning rate
schedule and callbacks effectively guided the
optimization process, resulting in a balanced and
reliable model for sugarcane leaf disease
classification.

TABLE 6. Training Validation Metrics at Key Epochs

Epoch Accuracy (Train/Val) Loss (Train/Val)

10 72.3/65.8 0.84/0.92
20 85.6/78.1 0.55/0.68
30 92.7/82.4 0.33/0.55
40 96.8/84.9 0.18/0.48
47 97.4/86.6 0.15/0.45

Table 5 provides a detailed summary of the
training and validation metrics across selected
epochs, illustrating how the model progressively
improved during the training process. At epoch 10,
training accuracy was only 72.3% and validation
accuracy 65%, reflecting the early stage of feature
learning where the network primarily extracted low-
level representations such as edges and textures. By
epoch 20, validation accuracy rose to 78.1% with
validation loss decreasing to 0.68, showing that the
pretrained weights of MobileNetV2 effectively
transferred general knowledge from ImageNet to the
sugarcane dataset. The most notable improvement
occurred at epoch 30, where validation accuracy
reached 82.4% and validation loss dropped sharply
to 0.55, coinciding with the adaptive learning rate
reduction triggered by the ReduceLROnPlateau
callback. This demonstrates that carefully tuning the
learning rate schedule is essential for achieving
stable convergence in transfer learning scenarios.

The performance continued to improve
modestly after epoch 30, stabilizing around 84-85%
validation accuracy. At epoch 40, the model
achieved 84.9% validation accuracy with validation
loss further reduced to 0.48, while training accuracy
reached 96.8%. Although this indicates strong
learning capability, the widening gap between
training and validation results suggests a potential
risk of overfitting. Fortunately, the application of
regularization strategies such as dropout layers and
the EarlyStopping callback mitigated this issue.
Training was halted at epoch 47, slightly before the
maximum planned epochs, at which point the model
attained its best validation accuracy of 86.6% with
validation loss of 0.45. The ModelCheckpoint
mechanism ensured that these optimal weights were
preserved, forming the final deployed model for
evaluation.

Overall, the analysis of training and
validation performance confirms that the integration
of transfer learning, fine tuning, and adaptive
callbacks yielded a MobileNetV2 based model that
was both accurate and efficient. The results highlight

the importance of combining quantitative
monitoring with systematic optimization strategies
to balance accuracy and generalization. Having
demonstrated effective convergence during training,
the next section extends the evaluation to
independent test data, including class wise analysis,
to further validate the robustness of the proposed
approach.

C. Model Evaluation

The testing was conducted using test data that
the model had never seen before. The test data
consisted of 200 images with four main classes,
namely Healthy, Yellow, Rust, and Red Rot. This
evaluation aimed to assess MobileNetV2's
generalization ability in dealing with image
variations in the field. The performance analysis
included calculations of accuracy, precision, recall,
F1 Score, and confusion matrix to provide a detailed
overview of the models prediction distribution for
each class. This assessment was crucial to validate
the model's performance quantitatively and
objectively on independent data, which reflected the
models performance in real world applications. This
evaluation focuses not only on aggregate metrics,
but also on granular analysis per class to understand
the specific strengths and weaknesses of the model,
especially given the class imbalance in the dataset
used.

The first metric evaluated was overall
accuracy, which measures the proportion of correct
predictions out of the total test data. The developed
model achieved an overall accuracy of 0.974. This
accuracy calculation is based on the total number of
correct predictions divided by the total number of
samples in the test data set. With 200 test images,
this result means that the model was able to classify
194 images correctly, while making only 6 errors.
The calculation is as follows:

194
Accuracy = 200 % 100% = 97.04% @)

This high level of accuracy provides a strong
initial indicator that the model has good
generalization capabilities. These results validate the
effectiveness of the chosen methodology, including
the use of the MobileNetV2 architecture, transfer
learning strategy, and data augmentation techniques
applied to address dataset imbalance. This success
demonstrates that the model has successfully learned
the essential discriminative features to distinguish
between healthy sugarcane leaves and those infected
with various types of diseases.

Although overall accuracy provides a
positive overview, this metric can be misleading in
multi class classification problems with imbalanced
data distribution. For a more in depth analysis, a
confusion matrix is used as a diagnostic tool to
dissect the models performance. This matrix not
only shows how many predictions are correct, but
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also reveals the nature of the errors made, namely
which classes are often confused with one another.
Table 7 presents confusion matrix of model
prediction results on 200 test images. Rows
represent the actual class of the image, while
columns represent the class predicted by the model.

TABLE 7. Confusion Matrix on Test Data
Predicted Class

Actual class  Healthy Yellow Rust Red Rot

Healthy 66 1 0 0
Yellow 1 58 1 0
Rust 0 1 36 1
Red Rot 0 0 2 33

The confusion matrix provides several
important insights. First, the high values along the
main diagonal indicate that the model correctly
classifies the majority of samples in each class,
confirming its strong overall performance. Second,
the off-diagonal values highlight areas where the
model struggles. The most notable error occurs
between the Rust and Red Rot classes, where 2 Red
Rot images were misclassified as Rust and 1 Rust
image was misclassified as Red Rot. This
misclassification is likely due to the visual similarity
of their symptoms, such as reddish-brown lesions,
which makes them more difficult to distinguish.
From a practical perspective, these errors could lead
to inappropriate treatments in the field, potentially
increasing pesticide costs and reducing disease
control effectiveness.

Other minor misclassifications include one
Healthy leaf identified as Yellow, which may be
explained by lighting variations causing a yellowish
appearance. Although such errors are relatively rare,
they illustrate the influence of environmental factors
on classification accuracy.

To complement the accuracy metric and
provide a fair evaluation across both majority and
minority classes, precision, recall, and F1 Score are
calculated. Precision reflects how many samples
predicted as positive are truly positive, recall
measures the proportion of actual positive cases
correctly identified, and F1 Score combines both
into a balanced measure of performance. These
metrics give a more nuanced evaluation of model
reliability across classes.

Here are the calculations for precision and
recall for each class based on data from the
confusion matrix on test data:

Healthy:

Precision = 61 1= 0.985 (8)
Recall =—22— = 0,985 9
e+ 1
Yellow:
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o 58
Precision = S5y 2o 0.966 (10)
Recall = >8 = 0.966 (11)
eatTegy 2
Rust:
Precision = 36 =0.923 (12)
recision = z—— = 0.
Recall = —2— = 0.947 13)
et =361 2
Red Rot:
Precision = Bl 0.971 (14)
Recall = 331 2 = 0.943 (15)

Table 8 summarizes the performance metrics
per class calculated based on the confusion matrix.

TABLE 8. Performance Metrics per Class

Class Precision Recall Slz(l);e
Healthy 0.985 0.985 0.985
Yellow 0.967 0.967 0.967
Rust 0.923 0.947 0.934
Red Rot 0.971 0.943 0.957
Macro Avg 0.962 0.961 0.961
Weighted Avg 0.966 0.966 0.966

In depth analysis of these metrics reveals that
for the Healthy Class, both precision and recall
reached 0.985, indicating near perfect reliability.
This balance suggests that the model can correctly
identify almost all healthy leaves while minimizing
false positives. For the Yellow Class, the precision
and recall values are equally strong at 0.967,
demonstrating the models ability to consistently
distinguish yellow leaf disease symptoms from other
conditions. Meanwhile, the metrics for the Rust and
Red Rot Classes highlight certain challenges. The
Rust Class shows a lower precision (0.923) but
relatively higher recall (0.947), meaning the model
is more likely to capture most rust cases but at the
cost of misclassifying some non rust samples.
Conversely, the Red Rot Class achieved high
precision (0.971) with slightly lower recall (0.943),
indicating the model is very confident when
predicting Red Rot, but a few actual cases remain
undetected. This trade off between precision and
recall in Rust and Red Rot suggests room for
refinement, particularly in differentiating visually
similar disease symptoms.

Based on the comprehensive evaluation, the
strengths and limitations of the proposed model can
be summarized as follows. The strengths include
high overall performance with a test accuracy of
97.04%, strong reliability in the Healthy class, and
cross-class robustness as reflected by consistently
high F1 Score across all categories, including
minority classes. These results highlight the
effectiveness of the data augmentation and training
strategies employed. The main limitation lies in
inter-class confusion, particularly between rust and
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Red Rot diseases, which share visually similar
symptoms. Additionally, a gap of approximately 11—
12% between training and validation accuracy
indicates moderate overfitting, although this effect
was partially mitigated through the use of callbacks.

The strong performance of the proposed
model can be attributed to the multi-phase fine
tuning strategy, which gradually unfreezes deeper
layers and allows the model to adapt more
effectively to domain specific features of sugarcane
leaf diseases. This process helps prevent overfitting
while maintaining high accuracy, explaining the
models consistent performance across all classes.

Moreover, the adaptive learning rate
scheduling and dropout regularization significantly
contribute to training stability, particularly under
conditions of limited dataset variability. These
findings explain why the model achieves a balanced
trade off between accuracy and efficiency.

Beyond the achieved metrics, this result
indicates that lightweight CNN architectures such as
MobileNetV2, when optimized through finetuning
and regularization, can serve as an effective and
practical framework for other agricultural disease
detection tasks. This suggests potential scalability
and real world adaptability of the proposed
approach, reflecting its broader contribution beyond
sugarcane leaf classification.

In comparison with previous research, the
fine-tuned MobileNetV2 model proposed by [22]
achieved  95.01%  accuracy  with  higher
computational cost due to single-phase tuning and
limited regularization. Similarly, [21] employed a
CNN-VGG16 model and obtained 98% accuracy but
with significantly larger parameters, making it less
efficient for real-time applications. In contrast, the
proposed model achieves comparable or higher
accuracy 97.04% while maintaining lightweight
complexity through multi phase finetuning and
adaptive regularization, which reduce training time
and parameter count. This demonstrates that the
proposed configuration provides a better balance
between accuracy and efficiency compared to prior
works.

As a follow up to the identified limitations,
several future research directions can be
recommended to further improve the performance
and utility of the model. From a data based approach,
it is recommended to conduct targeted data
collection for the Rust and Red Rot classes and
explore further augmentation using Generative
Adversarial Networks (GANs). From a model based
improvement perspective, integrating Attention
Mechanisms into the MobileNetV2 architecture can
help the model focus on the most discriminative leaf
arcas, while the use of Ensemble Methods can
improve prediction robustness. Finally, from an
application-based expansion perspective, the model
can be expanded to quantify disease severity levels.
Most importantly, it can be applied and tested in the

real world on edge devices to validate the model's
robustness to various field conditions and bridge the
gap between research and practical application.

IV.CONCLUSION

This study focused on the development of a
deep learning-based classification system for
sugarcane leaf diseases using the MobileNetV2
architecture, motivated by the urgent need to support
precision agriculture with computationally efficient
solutions. Through systematic stages of dataset
acquisition, preprocessing, augmentation to address
imbalance, transfer learning, fine-tuning, and
evaluation, the proposed model achieved an overall
accuracy of 97.04% with balanced precision, recall,
and Fl-scores across the four classes: Healthy,
Yellow, Rust, and Red Rot. These results
demonstrate that MobileNetV2 can serve as an
effective backbone for agricultural disease
detection, combining high accuracy with
computational efficiency suitable for low-resource
environments. However, this study faced
limitations, particularly related to the imbalance in
dataset distribution and the constrained diversity of
field conditions, which occasionally led to
misclassifications between visually similar diseases
such as Rust and Red Rot. Despite these challenges,
the findings highlight the potential of lightweight
CNN architectures to deliver robust, scalable, and
deployable solutions for real-world farming
practices. Future research should aim to expand the
dataset with greater inter-class balance, explore
integration of attention mechanisms or ensemble
strategies to further enhance classification
robustness, and implement severity-level estimation
for more actionable disease management. Future
validation on field conditions and deployment on
edge devices will further verify the models practical
applicability.
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