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ABSTRACT The paper explores the methods for encrypting and decrypting an 8-qubit states of quantum
system using unitary and permutation matrix. Our approach utilizes a unitary matrix to create a new
superpositions of an encrypted 8-qubits states. By applying a permutation matrix, we shuffle the state vectors,
adding an additional layer of security. The encryption process will be performed on the encrypted state X using
the formula X' = X - U - P, where X is the original state vector, X is the unitary matrix, and P is the permutation
matrix. To ensure the total probability remains normalized, we showed that the resulting new 8-qubits state X’
remains normalized. The decryption process is achieved by applying the following operations, X = X’ - PT -
U retrieving the original state. This paper also is showing that the original quantum state can be accurately
recovered post-decryption. This highlights the robustness of our approach in maintaining the integrity of
quantum information. Furthermore, we aim to create n block for n different 8-qubits state using a different key
in each block from the initial unitary matrix U and permutation P. In order to implement these methods, we
need to generate a new unitary matrix for each block. Either by random pick or using iteration. In fact, we
showed how to create the new unitary matrix using iteration for each block. Here we showed that the new
generated matrix UP is also a unitary matrix so that we can use iteration proses to create a new unitary matrix
in each n block for n different 8-qubits state. Here we generate the unitary matrix U,, from U,,_; as key in
block n. This result in the encryption of each block for each 8-qubits state using the formula X;, = X,, - U,, - P
resulting in a more robust security. The encryption/decryption scheme we referenced can theoretically be
implemented on modern quantum hardware but verifying operations involving hundreds of qubits would
demand rigorous calibration and error correction.
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LINTRODUCTION

In 1982, R. P. Feynman [1]] introduced an
interesting concept that laid the groundwork for
modern quantum computing. His exploration of
simulating physical processes with computers
proposed that classical computers might be
inadequate for simulating quantum phenomena
efficiently. The surge in quantum computing has
revolutionized how we approach data encoding and
security such as Shor’s Algorithms [2] to break a
certain security system that previously was
considered complex. Unlike traditional digital
frameworks that rely on binary digits (Os and 1s),
quantum systems leverage qubits. These qubits can
exist in 0, 1, or any complex superposition of both,
enabling more intricate and powerful data operations
[3]. To represent alphabets (like A-Z), quantum
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computers use encoding methods that map each
letter to a unique binary sequence, similar to ASCII
encoding in classical systems. However, in quantum
systems, these binary representations can be placed
into superposition states, allowing for more complex
operations [4]. Qubits can represent alphabets by
encoding them in states that combine multiple
quantum states simultaneously. The multiple qubits
also explained in [4] including the 8-qubits system.
In classical computing however, letters are
represented using 8-bit binary  sequences.
Conversely, in quantum computing, the concept
shifts to an 8-qubit system. This system consists of
8 individual qubits, each capable of existing
simultaneously in a superposition of the states |0)
and |1). This superposition allows quantum systems
to encode information in a more various way than
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classical bits, enhancing both the complexity and
potential capabilities of data representation and
manipulation within quantum system. As the
number of qubits increases, the dimension of the
state space increases exponentially. As explained
before in [3], in general, an 8-qubit system has a

state space of
255

¥) = el

i=1

The i) in here represent one of the 256
possible basis state combinations of the qubits, and
c; are complex coefficients corresponding to the
probability amplitudes for the basis state i) and each

¢; must satisfy the normalization condition:
255

Dlal? =1
i=0

For example, a letter could be mapped to a
specific quantum state that corresponds to a binary
encoding like '01000001' for 'A'. In this case, the ;
of'01000001" will tell us the probability this 8-qubits
will result in ‘A’ when measured.

In [5] the classical cryptography and some of
the coding theory and method were explained. One
fundamental area of study involves the development
and enhancement of classical encryption methods to
fit within quantum system. This paper explores the
combination of unitary matrix and permutation
transformations to encode 8-qubit states in matrix
form, drawing connections between traditional
binary code theory and quantum system.

Binary code theory underpins much of
classical data encryption, such as in [5] where data
is represented and manipulated using sequences of
binary digits also knows as bits. As a simple
example, shift cipher, or Caesar cipher, is one of the
simplest and oldest encryption techniques. It works
by shifting each letter of the plaintext a fixed number
of places in the alphabet.

In the realm of binary code theory, our
encryption method adapts with traditional
encryption methods while incorporating layered
security strategies. Previous works, such as the Hill
cipher [11], which also be explained in [5], is a
matrix transformation cipher that uses linear algebra
principles. The plaintext is divided into blocks of
letters, and each block is represented as a vector.
These vectors are then multiplied by an invertible
matrix (key matrix) to produce ciphertext. In the
binary context, this method can be adapted to handle
matrices over binary fields, extending its
applicability to digital data encoding which
employed matrix multiplication to secure data,
working on blocks of binary-coded plaintext. While
effective for classical data, it lacked the state
transformations present in our approach. As
demonstrate before in [6] to enchant the encryption
to be more robust, permutation codes can be applied
to enhance data security by rearranging the positions

of data bits based on a specific permutation pattern,
creating a layer of obfuscation. Permutation
matrices are commonly employed in constructing
permutation codes. They are binary matrices with
exactly one entry of 1 in each row and column and
zeros elsewhere, representing a reordering of vector
components. Here, we want to create a new matrix
key in each block so that the encryption key for each
block is different for each other. We can implement
this method by combining the concept of Hill cipher
techniques and permutation codes to allows for the
creation of more robust encryption mechanisms. The
method involving to represent the code as a matrix
form as explained in[7].

As in [12] explored permutation ciphers
applied to binary data, emphasizing reordering to
conceal information. In contrast, our method
advances this concept by integrating permutations
with unitary matrices, creating a secure system for
8-qubits-encoded information that remains balanced
and retains properties essential for decoding without
data loss.

Additionally, in [12], the combination of
different ciphers to bolster data protection was
highlighted, often involving hybrid block and stream
techniques [16] to thwart cryptanalysis. Our
framework achieves similar robustness by
generating unitary matrices iteratively (e.g., Un =
f(U,_1), enhancing each encryption cycle. This
produces a distinct key for each block of binary data.
This layered approach ensures decoding can only be
achieved through the correct application of each key
in each block, maintaining data security in binary
code systems.

In this paper will explain an approach that
adapts these classical methods for encoding
information within 8-qubits quantum systems,
specifically leveraging unitary matrix and
permutation transformation to represent and
manipulate qubit states in matrix form. The purpose
of our research is to explore and enhance the
application of binary coding theory in encryption
and decryption mechanisms by employing matrix-
based methodologies within an 8-qubit system. We
will integrate the unitary matrix U as a primary
component within the Hill cipher framework,
combined with a permutation matrix P, forming the
encryption formulaX’' = XU -P . Additionally,
we aim to extend this approach to recursive
encryption by constructing a sequence of blocks,
where U, serves as the key for block n. Our research
will apply this advanced matrix-based structure to an
8-qubit system, ensuring that decryption is well-
defined, thereby demonstrating the robustness of
this approach for maintaining data integrity and
enhancing cryptographic security.

As in quantum computing, unitary matrices
[18] play a crucial role in ensuring the correct
evolution and transformation of quantum states. As
explained is [8] [10] [17] A unitary matrix U is a
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complex matrix that satisfies the condition UUT =
UtU =1 . Ut is the conjugate transpose of U and I
is the identity matrix. This property guarantees the
preservation of the norm of vectors, which is vital
for maintaining the probabilistic interpretation of
quantum states during computations. Unitary
matrices are fundamental in quantum mechanics
because they describe quantum gates that perform
reversible transformations on qubits. These
transformations are essential for the accurate
manipulation of quantum information without losing
coherence. For instance, in [3] [4] the Hadamard
gate, represented by a unitary matrix, creates
superpositions, a basic requirement in many
quantum algorithms. The norm-preserving property
of unitary matrices ensures that the probabilities of
all possible outcomes in a quantum measurement
always sum to one, reflecting the conservation of
quantum information. This reversibility is also
crucial as it allows any quantum operation to be
undone, a necessary feature in complex quantum
computations and algorithms.

Unitary matrices are indispensable in
quantum algorithms such as Shor's algorithm for
factoring integers [2]. These algorithms rely on
unitary transformations to manipulate qubits and
perform computations exponentially faster than
classical algorithms. Additionally, unitary matrices
are central to quantum error correction codes, as in
[4] which protect quantum information against
decoherence and other forms of quantum noise.
These codes use unitary operations to encode and
decode quantum information, allowing errors to be
detected and corrected, thus preserving the integrity
of the quantum computation.

The purpose of our research :

The purpose of our research is to delve
deeply into and advance the application of binary
coding theory in encryption and decryption
processes by utilizing matrix-based methodologies
within an 8-qubit quantum computing system. This
exploration is motivated by the need to develop
more robust, secure, and efficient cryptographic
methods that can leverage the unique properties of
quantum mechanics.

We propose the integration of the unitary
matrix U as a fundamental component within the
Hill cipher framework. The Hill cipher, a classical
encryption method, typically involves matrix
multiplication to transform blocks of plaintext into
ciphertext. By using the unitary matrix, which in
quantum computing refers to unitary matrices as a
transformation of multiple-qubits states, we adapt
this classical method to the quantum domain.
Unitary matrices are essential in quantum computing
because they preserve the norm of the quantum state,
ensuring that the quantum system remains in a valid
state throughout the computation process.
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To further enhance the security of our
encryption method, we combine the unitary matrix
U with a permutation matrix P. The permutation
matrix P reorders the elements of the vector it
multiplies, adding an additional layer of complexity
and security to the encryption process as
demonstrate in [17]. We will show that the resulting
encryption model can be expressed as X' =X - U -
PX'= X.U.P, where X is the initial quantum
state, and X' is the encrypted state.

One of the key innovations of our research is
the introduction of a recursive structure for the
encryption process. This involves creating a
sequence of encryption blocks, with each block say
block n having its own unique key matrix U,,. This
iterative approach enhances security by ensuring
that each block of data is encrypted with a different
transformation, making it significantly more
difficult for an adversary to decipher the entire
dataset if they manage to decrypt one block. We will
show how to do this recursive so that that the
encryption for block n can be defined as X,," = X,, -
U, - P,wheren =1, 2, 3,.... For instance, encoding
an 8-bit message X into binary and encrypting it
involves transforming it with U and scrambling it
with P. Decryption shows that applying P” followed
by UT retrieves X, demonstrating consistency with
binary code theory principles while achieving
enhanced data protection.

Our research also focuses on ensuring that
the decryption process is well-defined and reliable.
The decryption must correctly reverse the
transformations applied during encryption to
retrieve the original data without loss of information.
This involves applying the inverse of the
permutation matrix P, that in [14] can be treated as
PT, and the conjugate transpose of the unitary matrix
U, denoted as U . Thus, the decryption process can
be described as X = X' - Pt - UT.

Given the properties of the 8-qubit system,
we illustrate that a Hadamard matrix [9] can be
effectively used as the unitary matrix U. The
Hadamard matrix is widely used in quantum
computing for creating superpositions, which are a
foundational aspect of quantum computation. By
integrating the Hadamard matrix into our encryption
sequence, we can leverage its ability to transform
quantum states in a way that maximizes their
informational entropy, further enhancing the
security of the encrypted data.

Through practical examples, we demonstrate
how our method integrates the Hadamard matrix for
the encryption sequence. We provide detailed steps
and implementations in Python to verify and explain
the outcomes, ensuring that the theoretical
underpinnings of our approach are grounded in
practical, reproducible results.

Our paper showed the robustness of this
combined method for maintaining data integrity and
enhancing cryptographic security. By leveraging the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 11 No. 2 Tahun 2024 ISSN: 2580-2291

principles of binary coding theory and quantum
mechanics, we aspire to create a sophisticated
encryption framework that is resilient against
contemporary cryptographic attacks and poised to
withstand future developments in quantum
computing

Then as described above, the main purpose of
our research is to introduce an advance the
application of binary coding theory in encryption
and decryption processes to an 8-qubits system of
quantum computing by we combine the unitary
matrix U with a permutation matrix P and we will
show that the resulting encryption model can be
expressed as X' =X -U-PX' = X.U.P, where X
is the initial quantum state, and X' is the encrypted
state. Furthermore, a recursive structure for the
encryption process can be made. We will show how
to do this recursive so that that the encryption for
block n can be defined as X,," = X, - U,, - P, where
n=123,... This involves creating a sequence of
encryption blocks, with each block say block n
having its own unique key matrix U,,. This iterative
approach enhances security by ensuring that each
block of data is encrypted with a different
transformation, making it significantly more
difficult for an adversary to decipher the entire
dataset if they manage to decrypt one block.
Furthermore, we will create an example of this
unitary matrix using the Hadamard matrix, as
described in [20], and implemented this in Python as
an example. The resulting program encrypts and
decrypts using the Hadamard matrix as the unitary
matrix and random permutations as the keys. This
practical  implementation  demonstrates  the
feasibility and effectiveness of our proposed
method, providing a robust solution for secure
quantum state encryption.

ILMETHOD
In classical computing, each bit in a binary
sequence corresponds directly to a single qubit when
represented in quantum form [5]. Each bit of the
classical binary representation can be represented by
a qubit. For the letter 'A', which is 01000001, we
would need an 8-qubit register where each qubit
represents one bit of the binary string. If a quantum
algorithm required processing multiple letters or
data, qubits could be set in a superposition state such

as W) = «/01000001) + B]01000010) +
v|01000011). With the asumtion that a? + % +
y? = 1[4].

To fully utilize quantum operations and
encryption methods, it is essential to represent the
state of an 8-qubit system in matrix form. An 8-qubit
system can be described as a state vector in a 256-
dimensional complex vector space, given that there
are 28 = 256 possible combinations of binary

states for the qubits [4]. This representation allows
for advanced operations, such as linear
transformations as in [8], which are foundational for
quantum computation and encryption algorithms.
Each basis state i) in an 8-qubit system corresponds
to a unique combination of eight bits, where i ranges
from 0 to 255. To represent the state |¥) in matrix
form, we construct a column vector of size 256 X 1.
Each element of this vector corresponds to one of the
basis states and its associated probability amplitude.

In general, the state vector could be written as:
Co

1
W) =
C254

C2s55
Our result :

In this paper we will show how do an
encryption with a unitary transformation to a
quantum state to securely encode information. To
achieve this, we need to define a 256 X 256 unitary
matrix U. A unitary matrix U is a complex matrix
that satisfies the condition UUt = UtU =1 . Ut is
the conjugate transpose of U and I is the identity
matrix [8]. This is obvious from the definition that
U~ =UT . Using the unitary matrix U, we will
perform the encryption while preserving the
normalization condition of the quantum state. This
ensures that the total probability of all possible states
remains 1.

In the next step, we will use a permutation
matrix P. A permutation matrix P is a special type
of square matrix used in various computational and
mathematical applications to rearrange or permute
the elements of a vector or the rows and columns of
another matrix. Permutation matrices are binary
matrices that have exactly one entry of 1 in each row
and each column, with all other entries being 0. This
structure ensures that when a permutation matrix is
multiplied with another matrix or vector, it reorders
the elements according to a specific permutation.
Hence, the inverse of a permutation matrix P is the
inverse of the permutation, that is a transpose of P
denoted by PT.

This The primary objective of this study was
to implement and evaluate the encryption and
decryption of an 8-qubit system using unitary and
permutation matrices. We will the show that the
matrix UP remained unitary, allowing the creation
of n blocks for n different 8-qubit states. The use of
unique unitary matrices for each block prevented
potential security vulnerabilities associated with
using a single key for multiple blocks. The use of the
a unitary matrix, combined with permutation
matrices, provided a robust framework for secure
quantum state encryption. Here we will analyze and
show that the unitary matrix combined with
permutation matrices provides a robust solution for
quantum encryption of state vectors by proofing that
the encryption matrix and the decryption matrix that
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was design as the key encrypted the original 8-qubits
state X to new 8-qubits state X’ and decrypted these
8-qubits state X’ back to the original 8-qubits state
X, adding an additional layer of security. The
encryption is well defined if the resulting X’ is
indeed a 8-qubits state that is a state that has 1 as the
cumulative total value of its constant in every 256
representations. We will show next that the
combination of these matrices ensured that the state
remained well-defined and normalized throughout
the process. The iterative generation of new unitary
matrices U, from U,_; for each block of 8-qubit
states added an additional layer of security. This
iterative method ensured that each block had a
unique key, enhancing the overall security of the
encryption process.

The decryption process, utilizing the inverse
operations of the permutation and unitary matrices,
demonstrated that the original quantum state could
be accurately recovered. This result validates the
encryption method, as the integrity of the quantum
information was preserved.

To perform the encryption, we will use the
unitary matrix U and the permutation matrix P. The
encryption process can be described by the
following operation X' = XUP. In order for this
operation to be well defined we need to ensure that
the matrix UP is also a unitary matrix so that we can
perform the encryption while preserving the
normalization condition of the quantum state. To
proof this we need to proof that the matrix UP
satisfies (UP)(UP)T = I. Since P is a permutation
matrix and the inverse of P is its transpose then we
have that Pt =PT. So that (UP)(UP)' =
U.P.PTUT =1. This complete our proof and
ensuring that the matrix UP is indeed a unitary
matrix.

Next, we would like to encrypt any state of
an 8-qubit system using the matrix UP, where U is
an arbitrary unitary matrix and P is an arbitrary
permutation matrix. Suppose we have an 8-qubit
system in a specific quantum state, and the matrix
representation of this state is denoted by X. Let U be
an arbitrary unitary matrix and P be an arbitrary
permutation matrix. To encode matrix X, we will
perform the following computation, resulting in the
encrypted state X' =X-U-P. This operation
ensures that the encoded state X' is a wvalid
representation of an 8-qubit state. We have
previously demonstrated that this matrix X' is indeed
well-defined and accurately represents the state of
the 8-qubit system. In other hand we can also
decrypted X’ to X by using the formula X = X' - PT .
ut.

Furthermore, the previous proof allows us to
create a new unitary matrix UP using unitary matrix
Uand permutation matrix P. Reapplying this
method, we can also create a unitary matrix UPP.
Here, for each block say for example, block n, we
have unitary matrix UPP ... P with the number of
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matrices P equal to n. This allows as to make an
iteration with the formula as follow, U, = U,,_;. In
summarize the encryption of block n of the sequence
of 8-qubits state is X, =X, U, P and the
decryption of block n of the sequence of §-qubits
state is X,, = X, - PT - U,,*.
successfully implemented and evaluated an
encryption and decryption method for an 8-qubit
system using unitary and permutation matrices. The
integration of these matrices ensured that the
encryption process remained robust, with the matrix
UP retaining its unitary properties, allowing for the
creation of multiple encryption blocks. By using
unique unitary matrices for each block, the approach
effectively mitigated security risks associated with
reusing a single key. This combination of unitary
and permutation matrices provided a well-defined
and normalized quantum state throughout the
encryption process. The iterative generation of new
unitary matrices U, for each block added an
additional layer of security, ensuring each block had
a distinct key. The decryption process, employing
the inverse operations of the permutation and unitary
matrices, accurately recovered the original quantum
state, validating the encryption method and
preserving the integrity of the quantum information.
This demonstrates the robustness and effectiveness
of the proposed quantum encryption framework.
Compariosn to the previus result :
Please note that the encryption/decryption scheme
we referenced can theoretically be implemented on
modern quantum hardware. However, verifying
operations involving hundreds of qubits would
require rigorous calibration and error correction,
which is beyond the scope of our research. Our focus
is on the theoretical foundation, particularly in
coding theory, and we adapt classical methods for
quantum computing. Specifically, we work with an
8-quantum-state approach. The comparison lies in
our encryption method, which is more secure
because it employs a double-layer encryption
scheme. This method is indeed more robust than
single-layer encryption.
Implementation on Python :

To summarized this write the algorithm as
follows.

Algorithms 1 showed how this method works
using a random unitary matrix.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 11 No. 2 Tahun 2024 ISSN: 2580-2291

Algorithm 1
Step 1: Initialization
¢ INPUT: State vector X (256x1)
¢ DEFINE: Unitary matrix U (256x256)
e DEFINE: Permutation matrix P (256x256)
Step 2: Encryption
FUNCTION Encrypt(X,U, P)
X'=XxUxP
RETURN X'
Step 3: Decryption
FUNCTION Decrypt(X',U, P)
U' = Conjugate Transpose(U)
PT = Transpose(P)
X=X xPTxUt
RETURN X
Main Program
X' = Encrypt(X,U, P)
ORIGINALx = Decrypt(X',U. P)
Verify
IF ORIGINALx ~ X THEN
PRINT " Decryption successful.”
ELSE
PRINT " Decryption failed.”

Algorithms 2 showed how this method works
using the iteration process as defined above so that
for each block we generate a new U, from the
previous U,,_, resulting in a new key for the block
n. The recursive proses are done by the matrix
product of unitary U,,_; and permutation matrix P
resulting in a more secure encryption proses than
algorithm 1.

Algorithm 2

Initialization

Input: State vector X (256x1)

num_qubits = 8

U, = Hadamard matrix normalized by /256

P = create_permutation_matrix(256)

Function create_unitary matrices(num_qubits):

U=U,
For i from 1 to num_qubits - 1:
U=U-P

Return U, P

Function encrypt(state, unitary, permutation):
X' = state - unitary - permutation
Return X’

Function decrypt(encrypted state, unitary, permutation):
Usine = unitary”
Pinw = permutation”

X = encrypted_state - Py - Ui,

Return X

Main Program
original_state = random complex vector of size 256
Normalize original state

11 1
H= \/5(1 _1)

Creating a Hadamard matrix for 28 (which is
256) means constructing a 256 X 256 matrix. The
Hadamard matrix can be recursively generated using
the following formula:

1 (Hyn-1  Hyn-a
Ha =—( o)
NF3 Hon-1 Hyn-1

For n = 8 the resulting Hadamard matrix
H,5¢ is a matrix of size 256 X 256. In ython you
can use the Hadamard library to create a Hadamard
matrix.

The final python project will be created as
follows

isport mumpy as mp
from scipy.linalg import hadamard

Function to create a permutation matrix:

def create_permutation matrix(n
P=np.x n.on)

per = np.random . permutation (n
for ngo(n)

Pli. permutation[i]] =1

return P

Function to create a unitary Hadamard matrix for 8 qubits:

def creat

hadamard matrix(n)
return b t

mard(n) / np.sqrt(n
Function to encrypt the state veetor:

def encrypt(state, unitary . permutation )
return np.dot(state . np.dot{unitary . permutation))

Function to decrypt the state vector:

def decrypt(encrypted state , unitary , permutation)

t(permutation_inv , unitary.iny

¢ = encrypt (ori
Encrypted-State:\u

print

# D

© = decrypt (encryp!
Decrypted St

print state)

# Verif,
if up. allc

print (" Decryp successful , - the- origins o is-recovered
else

print (" Decryption- failed .- the-or state-is-mot-recovered

And the Python program to run the iteration
as defined above are as follows

unitAry. matrix . permutation matri

unitary_matrix , permutation matrix

unitary _matrix, permutation.matrix = create_unitary _matrices(num_qubits)

encrypted_state = encrypt (original_state, unitary_matrix, permutation_matrix
decrypted_state = decrypt(encrypted_state, unitary_matrix, permutation_matri
Verify if decrypted_state =~ original _state

To demonstrate how it works we will now try
to write an example by writing a python program for
this method. First, for an 8-qubits we represent this
8-qubits in matrix form X. Then we need an unitary
matrix P. We will use a Hadamard matrix for this
unitary matrix P as shown in [9] . The Hadamard
matrix X for a single qubit is defined as :
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Import required libraries: numpy as np. scipy.linalg.hadamard

ion to create a permutation matrix
ate_permutation matrix(n)

Function to create a unitary Hadamard matrix
def create hadamard matrix(n):
return hadamard(n) / /n

Function to generate the nth unitary matrix
unitary matrices(nus qubits)

mard _matrix(n)
i fon_matrix =
for ge( 1, num_¢
v U, permutat

tation_matrix(n)

return U, permutation_matr

Function to decrypt the state vector
def decrypt(encrypted state, unitary, permutation):

nitary_matrix, permutation_matrix = create_unitary_matrices(num_qubits

Encrypt the state
encrypted_state = encrypt{origin

Ary_matrix, permutation_matrix

print("Encrypted State:\n", 1 state)

Decrypt the state
decrypted state = decrypt(enery
print("Decrypted State:\n",

unitary_matrix. permutation matrix
pted state)

original state is recovered.”)

print("Decryption failed, the original state is not recovered.”)

The Python code leverages the libraries
numpy and scipy to perform complex matrix
operations essential for quantum state manipulation.
The numpy library is utilized for its powerful
numerical operations, enabling efficient handling of
matrices and vectors, while scipy's hadamard
function provides the Hadamard matrix, known for
its orthogonal properties crucial in quantum
computations.

The function create permutation matrix(n)
generates an n X n permutation matrix. This matrix
is constructed by shuffling the rows such that each
row and column contains exactly one "1", ensuring
that the matrix effectively reorders elements during
multiplication. The function begins by initializing an
n Xn zero matrix P. It then creates a random
permutation of integers from 0 to m—1 and
populates the matrix P so that each row placesa "1"
in a column specified by the permutation.

The create hadamard matrix(n) function

returns an n X n Hadamard matrix, normalized by

1 . . . . .
N The normalization is essential in quantum

computations to maintain the normalization of
quantum states. The function utilizes scipy's
hadamard(n) to generate the Hadamard matrix and
then divides it by v/n to normalize it.

The create unitary matrices(num_qubits)
function aims to generate a unitary matrix by
iteratively multiplying a Hadamard matrix by
permutation matrices, simulating a series of
quantum operations. The function calculates n =
2mum_qubits o accommodate the 8-qubit system,
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resulting in a 256-dimensional state vector. It
initializes the matrix U with the normalized
Hadamard matrix and iteratively multiplies U by a
permutation matrix NUMgyp;es — 1 X, ensuring the
transformations are complex and effective. The
function returns the final unitary matrix and the last
permutation matrix used.

The encrypt(state, unitary, permutation)
function encrypts the state vector by sequentially
multiplying it with the unitary and permutation
matrices, following the formula X' = X - U - P. The
function returns the encrypted state vector.
Conversely, the decrypt(encrypted state, unitary,
permutation) function decrypts the state by applying
the inverse of the unitary and permutation matrices.
The decryption process uses the formula X = X" -
Pt-Ut =X"-P71. U™, where U1 is the transpose
conjugate of U and P~! is both the transpose and
inverse of P. This ensures the correct retrieval of the
original state vector, maintaining the integrity of the
quantum information.

In an example run, the code handles an 8-
qubit system where num_qubits = 8 results in n =
256, creating a 256-dimensional state vector. A
complex random vector is generated and normalized
as the original state. During encryption, the state
vector is transformed using the generated unitary
and permutation matrices. The decryption process
then reverses these transformations, with the
decrypted state being compared to the original using
the np.allclose() function. This comparison confirms
that the decrypted state is approximately equal to the
original, validating the success of the encryption-
decryption cycle.

The original output of this program are
complex matrices 256 X 256 both in encrypted state
and in decrypted state in which we needs a lot of
space to visualize but we simplified the output of this
program for a few firs and lastt term and displayed
it as follows :

Encrypted State:
[2.34038526e-02+2.17509742e-02j -6.03981802e-
03+4.56055155¢-02j 1.69003759¢-
02+8.12635722¢-03;j -1.10377420e-
02+3.91224586¢-02j 4.35575304¢-
02+1.04051998¢-03;]

Decrypted State: [0.05437421+0.07096808;
0.04757264+0.07325192j .03779137+0.05093413;
0.06995303+0.0141159j

0.06696016+0.01274167]
0.06921159+0.04156791;j
0.01065823+0.01309069j]

Decryption successful, the original
state is recovered.

III.RESULT AND DISCUSSION

In classical cryptography, as described in
references [5], [6], and [7], encryption and
decryption methods are employed to secure binary
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data using various ciphers. The Hill Cipher and
Permutation Method are prime examples of such
techniques. However, these methods are considered
relatively weak when used alone in modern contexts.
To address this, it is essential to develop new
methods or enhance existing ones by combining
them to create stronger encryption and decryption
systems. For instance, studies in [16] and [17]
introduced novel encryption and decryption
methods involving both block and stream ciphers, as
explained in [5], to ensure robust data security.

The primary objective of this study was to
implement and evaluate an encryption and
decryption method for an 8-qubit system from
quantum computing in which was introduced by
Feynman's introduction of the quantum system in
1982 [1], similar to the approaches in [16] and [17].
We utilized unitary and permutation matrices for
encryption, drawing inspiration from [18] to
preserve the unitary of the 8-qubit quantum state,
ensuring that the transformation results remained
valid quantum states [4]. Our results indicate that the
matrix UP, where U is the unitary matrix and P is
the permutation matrix, remained unitary. This
facilitated the creation of n blocks for n different 8-
qubit states. This finding is significant because it
confirms that the unitary nature of the encryption
matrix is preserved, an essential requirement for
quantum computing operations.

By using unique unitary matrices for each
block, we effectively mitigated potential security
vulnerabilities associated with employing a single
key for multiple blocks. This approach aligns with
contemporary  cryptographic  practices  that
emphasize key uniqueness to prevent cross-block
security breaches, as outlined in [5]. The
combination of unitary and permutation matrices
established a robust framework for quantum state
encryption. This dual-matrix method ensures that
state vectors are encrypted securely, adding an extra
layer of protection that is crucial for maintaining
data integrity in quantum communication systems.

Our methodology confirmed that the
combined use of unitary and permutation matrices
ensures the encrypted state remains well-defined and
normalized throughout the process. This is critical
for quantum systems, as maintaining normalization
prevents loss or distortion of quantum information.
The iterative generation of new unitary matrices U,
from U, _, for each block of 8-qubit states added an
additional layer of security. Each block having a
unique key significantly enhances the overall
security of the encryption process, a feature that is
vital for scalable quantum encryption systems. The
key for each of this block can be calculate using the
formula U; = U and U,, = U,,_,P. Consequently,
the encryption process is achieved by applying the
following operations X' =X-U-P and the
decryption process is achieved by applying the
following operations X = X' - PT - UT. Where X is

the original state vector, X is the unitary matrix, and
P is the permutation matrix.

Furthermore, we successfully created an
example of this unitary matrix using the Hadamard
matrix, as described in [21], and implemented this in
Python as an example. The resulting program
encrypts and decrypts using the Hadamard matrix as
the unitary matrix and random permutations as the
keys. This practical implementation demonstrates
the feasibility and effectiveness of our proposed
method, providing a robust solution for secure
quantum state encryption.

These findings highlight the importance of
combining unitary and permutation matrices to
develop secure quantum encryption methods in 8-
qubits system, ensuring that quantum states remain
well-defined and normalized throughout the process.
This approach not only enhances security but also
provides a scalable solution for larger quantum
systems, paving the way for further advancements in
quantum cryptography and secure communication
protocols.

IV.CONCLUSION

In conclusion, as in our main objective, this
paper successfully implemented and evaluated an
encryption and decryption method for an 8-qubit
system introduce an advance the application of
binary coding theory in encryption and decryption
processes to an 8-qubits system of quantum
computing by using unitary and permutation
matrices. The integration of these matrices ensured
that the encryption process remained robust, with the
matrix UP retaining its unitary properties, allowing
for the creation of multiple encryption blocks using
the formula U, = U,_, and U; = U. we showed
that the resulting encryption model can be expressed
as X'=X-U-PX'=X.U.P, where X is the
initial quantum state, and X' is the encrypted state.
The iterative generation of new unitary matrices U,
for each block added an additional layer of security,
ensuring each block had a distinct key.. We also
successfully created an example of the unitary
matrix using the Hadamard matrix. The resulting
program encrypts and decrypts using the Hadamard
matrix and random permutations as the keys. This
practical implementation demonstrates the existence
of our proposed method.
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